
Additional Pseudocode for the article
“Algorithms for Manipulation of Level Sets of

Nonparametric Density Estimates”

Jussi Klemelä

June 25, 2003

1 An algorithm for forming a level set tree

We give in the following an algorithm for forming the level set tree. This al-
gorithm is a typical tree-creating algorithm. The algorithm starts by finding
roots of the tree. Then we travel to the upper levels of the tree. When there
is a branching of the tree, we will travel to one of the branches and will put
those nodes, which are starting nodes of other branches, to a stack. Once we
reach a leaf node, we took a node from the stack and start again traveling
upwards. The algorithm calls a procedure partition for partitioning a set of
gridpoints. Note that the tree structure of a multitree is uniquely determined
by giving the parent node for every node,

1. Input for the algorithm is an evaluation tree. Also, an input is a grid
of levels of the level set tree to be calculated: 0 < Q1 < · · · < QL.

2. Output of the algorithm is a level set tree. With every node of the level
set tree there is associated a set of gridpoints (disconnected components
of level sets) and a level. Tree structure of the tree is determined by
giving parent for every node and giving for root nodes an appropriate
label.

3. Internal data structure of the algorithm is a stack S of nodes of the
level set tree.

ALGORITHM form for forming a level set tree

1



1. partition the level set with level Q1 to minimally disconnected com-
ponents, these disconnected components are the root nodes of level set
tree LST

2. put these components of level Q1 to stack S

3. if we have more than one level (L > 1)

(a) while stack S is not empty

i. take a component C from stack S, assume that the level of
this component is Ql

ii. make intersection with component C and the level set of level
Ql+1

iii. if component C is the same as this intersection, then

A. change the level of component C to be Ql+1

B. if Ql+1 < QL, then put component C back to stack S

iv. else (intersection is a genuine subset of component C)

A. partition the intersection to disconnected components,
assign the parent of these new components to be compo-
nent C, add these new components to level set tree LST

B. if Ql+1 < QL, then put new components to stack S

v. end if

(b) end while

4. end if

5. return LST

In step 3(a)iii.A we have economized the level set tree by not taking
such nodes to the tree whose associated set is the same but only the level is
changing.

In step 1 and step 3(a)iv.A we have called a procedure partition which
is the heart of the algorithm. Next section describes this procedure.

2 An algorithm for calculating evaluation tree

for the weighted average of two functions

Here is the pesudocode for the algorithm treeadd for making a weighted
average of two evaluation trees.

2



1. Input of the algorithm

2. Output of the algorithm

ALGORITHM treeadd(tr1, tr2, p)

1. go through the leafs of tree tr1.

2. Consider leaf curleaf of tree tr1. We grow tr1 by making curleaf the
root node of a subtree of tr1. Initialize stacks: Sadd[1] = curleaf and
Str2[1]=root of tr2.

3. while stacks are not empty

(a) Take from stack Sadd node curleaf of new tree and from stack
Str2 node nodeoftr2 of tr2.

(b) while nodeoftr2 is not a leaf

i. let s be the split point and k the direction of node nodeoftr2

ii. if s splits the set of the current node curleaf , then

A. create left child newleft and right child newright for
curleaf

B. Denote val = value of curleaf , val.left = value of left
child of nodeoftr2, val.right = value of right child of
nodeoftr2.

C. Calculate mean: annotate left child newleft with (1−p) ·
val + p · val.left and annotate right child newright with
(1 − p) · val + p · val.right.

D. Put right child newright to the stack Sadd and the right
child of node nodeoftr2 to the stack Str2.

E. Set nodeoftr2=left child of node nodeoftr2.

iii. else if s is smaller than the left endpoint of rectangle of the
current node curleaf , in direction k, then set nodeoftr2=left
child of node nodeoftr2.

iv. else (if s is larger than the right endpoint of rectangle of the
current node curleaf , in direction k, then set nodeoftr2=right
child of node nodeoftr2.

(c) end while

4. end while

3



5. end go

6. return tr1

Note that in the definition of the evaluation tree only leaf nodes were
annotated with values of the function. In the above algorithm we have an-
notated also other nodes, in step 3.(b).ii.

4


	An algorithm for forming a level set tree
	An algorithm for calculating evaluation tree for the weighted average of two functions

