1 An algorithm for forming a level set tree

We give in the following an algorithm for forming the level set tree. This algorithm is a typical tree-creating algorithm. The algorithm starts by finding roots of the tree. Then we travel to the upper levels of the tree. When there is a branching of the tree, we will travel to one of the branches and will put those nodes, which are starting nodes of other branches, to a stack. Once we reach a leaf node, we took a node from the stack and start again traveling upwards. The algorithm calls a procedure partition for partitioning a set of gridpoints. Note that the tree structure of a multitree is uniquely determined by giving the parent node for every node,

1. Input for the algorithm is an evaluation tree. Also, an input is a grid of levels of the level set tree to be calculated: \(0 < Q_1 < \cdots < Q_L \).

2. Output of the algorithm is a level set tree. With every node of the level set tree there is associated a set of gridpoints (disconnected components of level sets) and a level. Tree structure of the tree is determined by giving parent for every node and giving for root nodes an appropriate label.

3. Internal data structure of the algorithm is a stack \(S \) of nodes of the level set tree.

ALGORITHM form for forming a level set tree

\begin{algorithm}
\end{algorithm}
1. **partition** the level set with level Q_1 to minimally disconnected components, these disconnected components are the root nodes of level set tree LST

2. put these components of level Q_1 to stack S

3. if we have more than one level $(L > 1)$

 (a) **while** stack S is not empty

 i. take a component C from stack S, assume that the level of this component is Q_l

 ii. make intersection with component C and the level set of level Q_{l+1}

 iii. if component C is the same as this intersection, **then**

 A. change the level of component C to be Q_{l+1}

 B. if $Q_{l+1} < Q_L$, **then** put component C back to stack S

 iv. **else** (intersection is a genuine subset of component C)

 A. **partition** the intersection to disconnected components, assign the parent of these new components to be component C, add these new components to level set tree LST

 B. if $Q_{l+1} < Q_L$, **then** put new components to stack S

 (b) **end while**

4. **end if**

5. **return** LST

In step 3(a)iii.A we have economized the level set tree by not taking such nodes to the tree whose associated set is the same but only the level is changing.

In step 1 and step 3(a)iv.A we have called a procedure **partition** which is the heart of the algorithm. Next section describes this procedure.

2 An algorithm for calculating evaluation tree for the weighted average of two functions

Here is the psuedocode for the algorithm **treeadd** for making a weighted average of two evaluation trees.
1. **Input** of the algorithm

2. **Output** of the algorithm

ALGORITHM `treeadd(tr1, tr2, p)`

1. go through the leaves of tree `tr1`.

3. **while** stacks are not empty

 (a) Take from stack `S` node `curleaf` of new tree and from stack `Str2` node `nodeoftr2` of `tr2`.

 (b) **while** `nodeoftr2` is not a leaf

 i. let `s` be the split point and `k` the direction of node `nodeoftr2`

 ii. **if** `s` splits the set of the current node `curleaf`, **then**

 A. create left child `newleft` and right child `newright` for `curleaf`

 B. Denote `val = value of curleaf`, `val.left = value of left child of nodeoftr2`, `val.right = value of right child of nodeoftr2`.

 C. Calculate mean: annotate left child `newleft` with `(1 − p) · val + p · val.left` and annotate right child `newright` with `(1 − p) · val + p · val.right`.

 D. Put right child `newright` to the stack `S` and the right child of node `nodeoftr2` to the stack `Str2`.

 E. Set `nodeoftr2=left child of node nodeoftr2`.

 iii. **else if** `s` is smaller than the left endpoint of rectangle of the current node `curleaf`, in direction `k`, **then** set `nodeoftr2=left child of node nodeoftr2`.

 iv. **else** (if `s` is larger than the right endpoint of rectangle of the current node `curleaf`, in direction `k`, **then** set `nodeoftr2=right child of node nodeoftr2`.

 (c) **end while**

4. **end while**
5. end go

6. return tr_1

Note that in the definition of the evaluation tree only leaf nodes were annotated with values of the function. In the above algorithm we have annotated also other nodes, in step 3.(b).ii.