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Abstract

We give supplementary material for the article “Volatility prediction

using kernel regression”.

1 The Sum of Squared Prediction Errors

We assume to have returns R1, . . . , RT . The sequential (or recursive) out-of-
sample sum of squares of prediction errors for the whole sample is defined
as

SSPE(f̂) =

T−η
∑

t=t0

(

R2
t+η − f̂(t)

)2

, (1)

where η < t0 ≤ T − η, η ≥ 1 is the prediction horizon, and f̂(t) is estimated
using the data R1, . . . , Rt.

A computationally less expensive sum of squared prediction errors can
be defined by dividing the sample into an estimation set and into a test set.
The predictor is constructed using the estimation set and the sum of squared
prediction errors is computed using the test set:

SSPEtest(f̂) =

T−η
∑

t=t0

(

R2
t+η − f̂(t0)

)2

,

where f̂(t0) is computed using the estimation data Rt, t = 1, . . . , t0. The test
data is Rt+η, t = t0, . . . , T − η.

A third version of the out-of-sample sum of squared prediction errors is
obtained when the predictor is updated at every time point, but the predictor
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uses always the same number of past observations. The predictor uses win-
dows of observations which are rolled over the available data. Let predictor
f̂(s, t) be constructed using the data Ri, i = s, . . . , t. Define

SSPEroll(f̂) =

T−η
∑

t=t0

(

R2
t+η − f̂(t− t0 + 1, t)

)2

.

Now the sum of squared prediction errors is computed for the estimator which
is constructed using exactly t0 observations at every time point.

2 Leverage Effect and GARCH Models

Andersen et al. (2006) identify the three most common GARCH formulations
for describing the leverage effect being (1) asymmetric GARCH models, (2)
threshold GARCH models, and (3) exponential GARCH models.

Heston and Nandi (2000) define model

σ2
t = α0 + α1(ǫt−1 − λσt−1)

2 + βσ2
t−1 (2)

= α0 + α1

(Rt−1 − λσ2
t−1)

2

σ2
t−1

+ βσ2
t−1,

where λ ∈ R is the skewness parameter. The model is an example of an asym-
metric GARCH model. Engle and Ng (1993) define the nonlinear asymmetric
GARCH model

σ2
t = α0 + α1σ

2
t−1(ǫt−1 − λ)2 + βσ2

t−1, (3)

which is for λ = 0 equal to the GARCH(1, 1) model. Engle and Ng (1993)
have defined the VGARCH model

σ2
t = α0 + α1(ǫt−1 − λ)2 + βσ2

t−1. (4)

A threshold GARCH model was defined in Glosten et al. (1993) and
Zaköıan (1994). In this model

σ2
t = α0 + α1Y

2
t−1 + λY 2

t−1I(Yt−1<0) + βσ2
t−1.

The exponential GARCH model was defined in Nelson (1991). In this
model

log σ2
t = α+ α1(|ǫt−1| −E(|ǫt−1|)) + λǫt−1 + β log σ2

t−1.

Menn and Rachev (2009) propose the GARMAX model which also can
cope with the leverage effect. Chorro et al. (2012) account for the leverage
effect by considering GARCH models where the innovations follow a gener-
alized hyperbolic distribution, instead of the standard normal distribution.
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3 Testing Statistical Significance

Giacomini and White (2006) proposes a generalization of the test proposed
by Diebold and Mariano (1995) and West (1996). Giacomini and White
(2006) test the hypothesis

H0 : Ei(di+η) = 0, H1 : Ei(di+η) 6= 0.

where Ei means the conditional expectation with respect to the informa-
tion available at time i. Now Ei(di+η) = 0 is equivalent to the fact that
E(hdi+η) = 0 for all h which are measurable with respect to Fi, where Fi is
the information set at time i. Let hi be a Fi-measurable random vector. Let

Zi = hi−ηdi.

Now (Zt) is a vector time series, with Zt ∈ Rd. If the time series (a′Zt)t∈Z
satisfies the conditions for the univariate central limit theorem for all a ∈ Rd,
then the multivariate central limit theorem holds. A central limit theorem
states that

St = t−1/2
t

∑

i=1

(Zi − EZi)
d

−→ N(0,Σ), (5)

where

Σ =
∞
∑

j=−∞

Γ(j) = Γ(0) +
∞
∑

j=1

(Γ(j) + Γ(j)′),

and the autocovariance matrix Γ(j) is defined as Γ(j) = Cov(Zi, Zi+j). Note
that we used the property Γ(j) = Γ(−j)′. To estimate Σ in (5) we use

Σ̂ = Γ̂(0) +
t−1
∑

j=1

w(j)
(

Γ̂(j) + Γ̂(j)′
)

,

where Γ̂(j) = 1
t

∑t−j
i=1

(

Zi − Z̄
) (

Zi+j − Z̄
)′
, for j = 0, . . . , t − 1. Chen and

Ghysels (2012) apply the test in volatility prediction by taking

hi =
(

1, (R2
i − f̂ b(i− η))2

)′

,

where f̂ b is the predictor used as a benchmark. In our case f̂ b = f̂ garch. The
test statistics is

TS = S ′
tΣ̂

−1St.

Under H0, TS
d

−→ χ2(1), as t → ∞. Large values of the test statistics lead to
the rejection of the null hypothesis. Let the observed value of TS be equal to
y. The p-value is equal to P (TS > y) ≈ 1−F (y), where F is the distribution
function of the χ2(1) distribution.
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4 Performance Measurement in Quantile Es-

timation

The number of exceedances can be used to measure the performance of a
quantile estimator. Let

p̂ =
1

T − t0

T−1
∑

t=t0

I(Rt+1≤q̂t+1),

where 1 < t0 ≤ T − 1. Now p̂ should be close to p. We can measure the
quality of the quantile estimator with the difference p− p̂, or we can express
the quality of the quantile estimator by using p-values of a test statistics for

H0 : E(p̂) = p, H1 : E(p̂) 6= p.

Assuming that random variable N =
∑T−1

t=t0
I(Rt+1≤q̂t+1) has a binomial distri-

bution under H0 with parameters n = T − t0 and p, we can use the likelihood
ratio test statistics

LR = −2 log[(1− p)n−NpN ] + 2 log[(1−N/n)n−N(N/n)N ],

which is asymptotically χ2(1) distributed; see Jorion (2006). The use of the
number of exceedances is not as easy as the use of the loss function when we
want to measure the performance simultaneously over all time intervals.
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