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Abstract

We study the prediction of a squared return of a financial asset in
a discrete time setting. The predictor is a kernel regression estimator
whose explanatory variables are a moving average of squared returns
and a moving average of returns. The predictor performs better than
the GARCH(1, 1) predictor and some related predictors, in the sense of
the mean squared prediction error, and when applied in the estimation
of conditional quantiles. The kernel predictor is able to cope with the
leverage effect.

Keywords: Leverage effect, Nadaraya–Watson estimator, news impact curve,
quantile estimation, risk management.
Journal of Economic Literature classification: C14 (Semiparametric and
Nonparametric Methods: General), C53 (Forecasting and Prediction Meth-
ods, Simulation Methods).

1 Introduction

We are interested in predicting the squared return

R2
t+η, (1)

where t is the current time, η ≥ 1 is the prediction horizon, and Ri =
Si/Si−1 − 1 is the net return of an asset with prices Si. The prediction is
done using the observed past returns R1, . . . , Rt. We use the term “volatility
prediction” to mean the prediction of a squared return.

We consider the prediction of R2
t+η as an regression problem where R2

t+η is
the response variable and the explanatory variable is Xt = (X1t, X2t), where
X1t is the square root of a moving average of past squared returns and X2t is
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a moving average of past returns. We apply the kernel regression predictor,
defined as

f̂(t, η) =

t−η
∑

i=k

pi(t)R
2
i+η, (2)

where 1 < k < t− η, and pi(t) ≥ 1 are the weights satisfying
∑t−η

i=k pi(t) = 1.
The kernel regression predictor is a weighted average of the past squared
returns. The weights pi(t) are such that they are large for those time points
i for which the value Xi of the predictor is close to the current value Xt of
the predictor. Thus, the predictor gives a higher weight to those time points
which were similar to the current time point. The kernel regression estimator
is called also the Nadaraya-Watson estimator.

The exponentially weighted moving average of squared returns is in itself
a good predictor for volatility. In fact, the exponentially weighted moving
average is close to the one-step GARCH(1, 1) predictor; see (8) and (18). The
kernel predictor adds an additional layer on the top of the moving average of
squared returns. Including a moving average of returns as a predictive vari-
able makes it possible to take the leverage effect into account. The leverage
effect means that previous negative returns are followed by a higher volatility
than the volatility which is followed by the previous positive returns.1

An important ingredient of the procedure is the transformation of the val-
ues of the predictive variables before applying the kernel regression. Namely,
we change the design distribution so that the marginal distributions of X1t

and X2t are the standard normal distributions. Without this transforma-
tion the application of the kernel regression would be difficult, because it
would be necessary to apply a spatially adaptive smoothing parameter. With
the transformation we obtain a design distribution which has a sufficiently
smooth density so that the basic kernel regression will perform well.

We compare the kernel regression predictor with the GARCH(1, 1) pre-
dictor using a time series of differences of cumulative sums of squared pre-
diction errors. This graphical tool is able to reveal the relative performance
of predictors over all time intervals. Thus we avoid the possible problem
that the choice of the testing period would affect the conclusions. In partic-
ular, a single financial crisis can dominate the performance measurement of
volatility predictors. The crises of autumn 1987 and 2008 are the two events
which tend to dominate the performance measures. We avoid the problem of

1The leverage effect was noted in Nelson (1991). The name “leverage effect” comes from
the fact that a possible explanation for this effect is that a drop in a stock price increases
the financial leverage of the firm. and thus the risk is increased. An other explanation for
the leverage effect is that a higher volatility requires a higher expected return in order to
compensate for the increased risk (volatility feedback).
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these dominating events by using the time series of differences of cumulative
sums. We show that the kernel regression predictor performs better than the
GARCH(1, 1) predictor over almost all time periods.

Testing the statistical significance of the superior performance is done
by computing p-values over all time periods. In the case of p-values we do
not have a convenient tool which allows to summarize results using a single
time series, as in the case of the differences of cumulative sums of squared
prediction errors. We use a graphical tool which shows level sets of a two-
dimensional function which assigns p-values to the testing periods [t1, t2].
Time t1 is the first argument of the function and t2 is the second argument
of the function.

There exists dozens or even hundreds of volatility predictors which are
alternative to the GARCH(1, 1) predictor. We make additional comparisons
between the GARCH(1, 1) predictor and an asymmetric GARCH predictor,
and an asymmetric exponentially weighted moving average predictor. These
asymmetric predictors are designed to take the leverage effect into account,
but they are not able to consistently beat the GARCH(1, 1) predictor.

We compare also the performance of the kernel regression predictor and
the GARCH(1, 1) predictor in the estimation of conditional quantiles. We
show that the kernel regression predictor leads to a better quantile estimator
than the GARCH(1, 1) predictor, over almost all time periods.

It is important, that the kernel regression predictor is able to give insight
into the way how the past squared returns and the past returns affect the
future volatility- We are able to show versions of the “news impact curve”.

Volatility prediction can be applied in variance and volatility trading,
covariance trading, quantile estimation, portfolio selection, and option pric-
ing. See Klemelä (2018, Chapter 7.1) for details about the applications of
volatility prediction.2

Often it is of interest to predict the realized variance
η
∑

i=1

R2
t+i. (3)

2The prediction of R2
t+η can be considered as the estimation of the conditional expec-

tation Et(R
2
t+η), because the conditional expectation of R2

t+η is the best prediction of
R2

t+η in the mean squared error sense. A closely related concept is the estimation of the
conditional variance

Vart(Rt+η) = Et

(

R2
t+η

)

− (EtRt+η)
2.

Since the squared conditional expectation (EtRt+η)
2 is often negligible as compared to

Et(R
2
t+η), the estimation of the conditional variance is close to the estimation of the

conditional expectation of the squared return. In our case the conditional expectation Et

is taken with respect to the sigma-algebra generated by the past returns R1, . . . , Rt. It is
also possible to consider larger sigma-algebras.
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The predictor of the realized variance is obtained as

η
∑

i=1

f̂(t, i), (4)

where f̂(t, i) is the predictor in (2). The realized variance of S&P 500 (with
daily logarithmic returns) is the underlying of a volatility futures contract in
CBOE.

We evaluate the methods using daily S&P 500 data. It is useful to predict
volatility also for lower frequencies. Define the s-period net return as

Rt,s = St+s/St − 1,

where s ≥ 1. It is of interest to predict R2
t,s. For example, in risk management

it is important to estimate the conditional quantile for s = 20 day return,
which is roughly one month return. An estimator of the conditional quantile
can be constructed from a volatility predictor (see Section 7). We construct
the predictor of R2

t,s by lengthening the frequency of the data from one day
to s days.

We consider only the prediction of squared net returns. The prediction
of the squares of logarithmic returns log(Si/Si−1) leads to almost similar
but not to completely identical results. The GARCH models are typically
postulated for logarithmic returns. A motivation for postulating a GARCH
model for logarithmic returns comes from the fact that then the price Si is
positive with probability one. The use of net returns can be motivated by
the fact that the s-period loss can be written in terms of the net return:

Lt,s = −(St+s − St) = −St(St+s/St − 1) = −StRt,s,

where s ≥ 1. In risk management it is of interest to estimate the upper
quantiles of the loss distribution (value-at-risk). Volatility prediction can
be applied in estimation of conditional quantiles and thus net returns are
relevant in volatility prediction.

We study the performance using the daily S&P 500 data, which consists
of the daily closing prices

starting at January 4th 1950 and ending at April 2nd 2014, (5)

which gives 16 046 daily observations. The data is obtained from web page
of Yahoo (http://finance.yahoo.com/) with ticker ˆGSPC.

The computations of the article can be reproduced by the R-programs and
instructions given in page http://jklm.fi/art/volapred/. The page contains
also supplementary material.
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The article is organized as follows. Section 2 defines the kernel predictor.
Section 3 explains how the differences between cumulative sums of squared
prediction errors can be used to compare predictors. Section 4 reviews pre-
vious work on volatility prediction. Section 5 compares squared prediction
errors between the kernel predictor and the GARCH(1, 1) predictor. Sec-
tion 6 shows news impact curves of the kernel predictor. Section 7 compares
the performance of the kernel predictor and the GARCH(1, 1) predictor in
the estimation of conditional quantiles. Section 8 contains a summary.

2 Definition of the Kernel Predictor

2.1 Predictive Variables

We use an exponentially weighted moving average of past squared returns
and past returns as predictive variables. We consider also the case where the
moving average of squared returns is replaced by the GARCH(1, 1) volatility.
A transformation of the variables is needed before applying kernel regression.

Denote Zt = (Zt1, Zt2), where

Zt1 =

(

t
∑

i=1

q1i (t)R
2
i

)1/2

, Zt2 =

t
∑

i=1

q2i (t)Ri, (6)

where the weights are

qli(t) =
L((t− i)/gl)

∑t
j=1L((t− j)/gl)

, (7)

l = 1, 2, gl > 0 are the smoothing parameters, and L : [0,∞) → R is
the kernel function. We choose a different smoothing parameter g1 for the
moving average of squared returns and g2 for the moving average of returns.
We choose L(x) = exp(−x)I[0,∞), which leads to the exponentially weighted
moving average.3

3When g = −1/ log γ, 0 < γ < 1, then

t
∑

i=1

qi(t)Ri =
1− γ

1− γt

t
∑

i=1

γt−iRi =
1− γ

1− γt

t−1
∑

i=0

γiRt−i. (8)

Note that the exponentially weighted moving average is often defined as

(1− γ)
t
∑

i=1

γt−iRi, or (1− γ)
∞
∑

i=0

γiRt−i. (9)
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We consider also the case where the moving average
∑t

i=1 q
1
i (t)R

2
i is re-

placed by the GARCH(1, 1) predictor σ̂2
t+1 of the volatility, so that

Zt1 = σ̂t+1; (10)

see (18) for the formula of GARCH(1, 1) volatility. The replacement will lead
to quite similar results.

The sample Zt, t = 1, . . . , T , of the observed values of the predictive
variables is defined in (6). Let the rank of observation Ztl, t = 1, . . . , T ,
l = 1, 2, be the number of observations of the lth variable smaller or equal
to Ztl:

rank(Ztl) = # {Zjl : Zjl ≤ Ztl, j = 1, . . . , T}.

We define

Xt =

(

Φ−1
(

rank(Zt1)

T + 1

)

,Φ−1
(

rank(Zt2)

T + 1

))

, (11)

for t = 1, . . . , T , where Φ is the distribution function of the standard nor-
mal distribution. Now X1, . . . , XT is a sample from a distribution whose
marginals are approximately standard normal, but the copula is the same as
the copula of the distribution of Zt.

Figure 1 shows (a) a scatter plot of (Zt1, Zt2) and (b) a scatter plot of
(Xt1, Xt2). Panel (a) shows that the original data of explanatory variables is
spatially inhomogeneous, and in panel (b) we have a more spatially homo-
geneous data. Thus, kernel regression with the original data would require
spatially adaptive smoothing parameter selection, whereas with the trans-
formed data we can apply kernel regression with a single scalar spatially
nonadaptive smoothing parameter h. This simplifies the procedure consider-
able. While there are available good spatially adaptive regression methods,
their use requires considerable care and the methods add some computational
complexity.

Note that leaving Φ−1 out of (11) would make the marginals approx-
imately uniformly distributed on [0, 1]. With the transformation of the
marginals to have approximately the uniform distribution many observations
would be near the boundaries of the square [0, 1]2. Especially the corners
would be filled with observations. Thus we would need to apply boundary
kernels in kernel regression. Choosing the marginals to be approximately
standard normal we obtain a design density whose tails decrease smoothly.4

4The transformation of the marginals to follow the standard normal distribution might
have some kinship with winsorizing, which has been used in volatility prediction to cope
with financial crises; see Bekaert and Hoerova (2014). Winsorizing is a transformation
of data with puts the extreme observations equal to a specified percentile, so that the
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Figure 1: Scatter plots of predictive variables. (a) Without the transform;
(b) with the transform.

2.2 Kernel Regression

The kernel regression predictor is defined as

f̂(t) = f̂h(t, η) =

t−η
∑

i=k

pi(t)R
2
i+η, (12)

where η ≥ 1 is the prediction horizon,

pi(t) =
Kh(Xt −Xi)

∑t−η
j=kKh(Xt −Xj)

, (13)

Kh(x) = K(x/h)/hd is the scaled kernel function, K : Rd → R is the kernel
function, and h > 0 is the smoothing parameter. We choose K to be the
density of the standard normal distribution. The predictor is computed from
returns R1, . . . , Rt. Since Xi is computed from R1, . . . , Ri, we choose k ≥ 1
to be a time point where the predictors can be computed to have a reasonable
accuracy.

In cross-validation the smoothing parameter h is chosen at time t as the
minimizer of

CVt(h) =

t−η
∑

i=t0

(

R2
i+η − f̂h(i, η)

)2

, (14)

observations smaller than the 1% empirical quantile are set equal to the 1% quantile, for
example. (Winsorizing is different from trimming, which removes the extreme observations
altogether.)
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where t0 + η ≤ t ≤ T . This gives a different smoothing parameter ht at each
time t.

The normal reference rule for the choice of the smoothing parameter h in
(13) puts

ht =

(

4

d+ 2

)1/(d+4)

t−1/(d+4), (15)

where d = 2. It turns out that the normal reference rule gives smaller
smoothing parameters than the cross-validation.5

3 The Sum of Squared Prediction Errors

We have used the sum of squared prediction errors in (14) to choose the
smoothing parameter. The sum of squared prediction errors can also be used
to compare the performance of the predictors. Note that we make always
out-of-sample evaluations, which means that the prediction error is computed
using observations which have not been used to construct the predictor.

The sum of squared prediction errors over the whole sample is not an
informative tool to compare predictors, because it is very sensitive to the
choice of the time period. The total sum of squared prediction errors is
dominated by few financial crises. The two main events are the crises of
autumn 1987 and the autumn 2008. However, the difference between the
cumulative sums of squared prediction errors gives a useful tool to compare
predictors. Looking at the time series of the cumulative sums of squared
prediction errors reveals the comparative behavior of the predictors over all
time periods, and thus we do not need to remove any data points as “outliers”
from the consideration.

We assume to have returns R1, . . . , RT . To compare two predictors f̂1 and
f̂2 we compute the difference of the cumulative sums of squared prediction
errors. Denote

Dt = SSPEt(f̂1)− SSPEt(f̂2), (16)

where

SSPEt(f̂) =

t−η
∑

i=t0

(

R2
i+η − f̂(i)

)2

,

5The normal reference rule can be found in Silverman (1986, page 45), for the case of
kernel density estimation. The rule can be used for kernel regression, because the kernel
regression estimator can be obtained as the conditional expectation of a kernel density
estimator of the distribution of (X,Y ). More generally, the coordinatewise smoothing
parameter is hi = (4/(d+2))1/(d+4)t−1/(d+4)σ̂i, where σ̂i is the sample standard deviation
for the ith variable. In our case σ̂i = 1.
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where t0 + η ≤ t ≤ T . Time series {Dt} reveals useful information about the
time periods where the one predictor outperforms the other. WhenDt−Du <
0, then predictor f̂1 performs better than f̂2 over time period [u, t], where
t > u. When Dt −Du > 0, then f̂2 is better over time period [u, t]. Indeed,

Dt −Du =

t−η
∑

i=u−η+1

(

R2
i+η − f̂1(i)

)2

−

t−η
∑

i=u−η+1

(

R2
i+η − f̂2(i)

)2

, (17)

where t > u. This graphical diagnostics has been applied in Goyal and Welch
(2003) and Goyal and Welch (2008).

Below we choose f̂2 always to be the GARCH(1, 1) predictor.
The supplementary material contains a discussion about the distinction

between the sequential (or recursive) sum of squares of prediction errors,
the rolling sum of squares of prediction errors, and the sum of squares of
prediction errors which uses a division to the estimation and testing set.

4 Previous Work

A large part of literature related to volatility prediction focuses on modeling
a time series of financial returns. Then a predictor is obtained as a byprod-
uct, by deriving a formula for the conditional expectation of the squared
return. In contrast, we are not focusing on modeling but our focus is on the
prediction. Andersen et al. (2006) contains a review of volatility prediction,
which includes a comprehensive list of references.

4.1 GARCH(1, 1) Model

The GARCH(1, 1) model is defined as

Rt = σtǫt, σ2
t = α0 + α1R

2
t−1 + βσ2

t−1,

where α0 > 0, α1 ≥ 0, β ≥ 0, and {ǫt} is an IID(0, 1) process. The condition
α1 + β < 1 implies strict stationarity. Now

E(R2
t+η |Rt, Rt−1, . . .) = σ̄2 + (α1 + β)η−1

(

σ2
t+1 − σ̄2

)

,

where
σ̄2 =

α0

1− α1 − β
.

We can write

σ2
t+1 =

α0

1− β
+ α1

∞
∑

k=0

βkR2
t−k. (18)
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These formulas give the best prediction in the sense of the mean squared
error.6 We obtain a usable predictor by replacing the unknown parameters
by their estimates, and by truncating the infinite sum in the formula of σ2

t+1.
Note that for the one step prediction (η = 1) the GARCH(1, 1) predictor

is close to the exponentially weighted moving average, as can be seen by
comparing (8) and (18). An exponentially weighted moving average in (6)–
(7) can be used to predict squared returns R2

t+η for all horizons η ≥ 1, When
η increases, then smoothing parameter g has to be chosen larger. When g
increases, then the moving average approaches the sample mean. This means
that for a large prediction horizon we use the sample mean of squared returns
as a predictor.

4.2 Asymmetric GARCH(1, 1) Models

The leverage effect is taken into account in the model

σ2
t = α0 + α1(ǫt−1 − λσt−1)

2 + βσ2
t−1 (19)

= α0 + α1

(Rt−1 − λσ2
t−1)

2

σ2
t−1

+ βσ2
t−1,

where λ ∈ R is the skewness parameter. The model was applied in Hes-
ton and Nandi (2000) to price options. There are many other asymmetric
GARCH models but we make comparisons with the Heston-Nandi model be-
cause under this model it is possible to derive almost closed form expressions
for the prices of European call and put options. Andersen et al. (2006) iden-
tify the three most common GARCH formulations for describing the leverage
effect being (1) asymmetric GARCH models, (2) threshold GARCH models,
and (3) exponential GARCH models. The Heston-Nandi model in (19) is
an example of an asymmetric GARCH model. See the supplementary mate-
rial for a discussion about the different GARCH formulations which take the
leverage effect into account.

Now

E(R2
t+η |Rt, Rt−1, . . .) = σ̄2 + (α1λ

2 + β)η−1
(

σ2
t+1 − σ̄2

)

,

where

σ̄2 =
α0 + α1

1− α1λ2 − β
.

6Let us denote Et( · ) = E( · |Rt, Rt−1, . . .). Using the fact that for η ≥ 1, Etσ
2
t+η =

EtR
2
t+η, we obtain the recursive formula

EtR
2
t+η = Et(α0 + α1R

2
t+η−1 + βσ2

t+η−1) = α0 + (α1 + β)EtR
2
t+η−1.

The recursion starts with EtR
2
t+1 = σ2

t+1.
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Figure 2: Time series of GARCH parameter estimates. (a) Estimates of
β in GARCH(1, 1) model (black) and in the asymmetric model (red). (b)
Estimates of λ in the asymmetric model.

The formula gives the best prediction in the sense of the mean squared error.7

We obtain a usable predictor by replacing the unknown parameters by their
estimates, and computing σ2

t+1 using recursion in (19), the starting value
being σ̄2 or the sample variance of the initial observations.

Figure 2 shows the times series of parameter estimates. Panel (a) shows
the sequentially estimated β. The black time series shows the estimates
in the GARCH(1, 1) model and the red time series shows the estimates in
the Heston-Nandi model (19). Panel (b) shows estimates of λ in model
(19). The parameters of the standard GARCH(1, 1) model are estimated
using R-package “tseries” and the parameters of the Heston-Nandi model
are estimated using R-package “fOptions”.

It is also of interest to apply an asymmetric moving average. The expo-
nentially weighted moving average in (9) is obtained by the recursive defini-
tion f̂(t) = (1− γ)R2

t + γf̂(t− 1) where 0 ≤ γ ≤ 1. The recursive definition

7Let us denote Et( · ) = E( · |Rt, Rt−1, . . .). It holds that for η ≥ 1, Etσ
2
t+η = EtR

2
t+η.

Using the fact
Et(ǫt+η−1 − λσt+η−1)

2 = 1 + λ2Etσ
2
t+η−1

we obtain the recursive formula

EtR
2
t+η = α0 + α1(1 + λ2Etσ

2
t+η−1) + βEtσ

2
t+η−1 = α0 + α1 + (α1λ

2 + β)EtR
2
t+η−1.

The recursion starts with EtR
2
t+1 = σ2

t+1.
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can be modified to take the leverage effect into account:

f̂γ(t) = (1− γ)f̂γ(t− 1)





Rt
√

f̂(t− 1)
− λ





2

+ γf̂γ(t− 1), (20)

where λ ∈ R is the skewness parameter. This is analogous to the GARCH
model in Engle and Ng (1993). The smoothing parameter g in (7) and γ are
related by g = −1/ log γ.

The smoothing parameter γ of the moving average can be chosen simi-
larily as in (14) by minimizing the criterion

CVt(γ) =

t−η
∑

i=t0

(

R2
i+η − f̂γ(i)

)2

,

where t0 + η ≤ t ≤ T . Aggregation of predictors provides more stable pre-
dictions than cross-validation, because CVt(γ) jumps during financial crises.
The aggregated predictor is

f̂(t) =

M
∑

m=1

wt,mf̂γm(t),

where γ1, . . . , γM is a finite collection of smoothing parameters, and

wt,m =
exp{−CVt(γm)}

∑M
l=1 exp{−CVt(γl)}

.

Aggregation has been used in machine learning; see Györfi et al. (2006) and
Györfi et al. (2012) for financial applications.

Figure 3 shows time series of

Dt = SSPEt(f̂)− SSPEt(f̂garch),

where f̂garch is the GARCH(1, 1) predictor. In panel (a) the prediction hori-

zon is η = 1 and in panel (b) η = 10. The predictor f̂ is the asymmetric
GARCH(1, 1) of (19) (black with “a-GARCH”), the exponentially weighted
moving average with λ = 0 and cross-validation (red with “EWMA”), the
exponentially weighted moving average with λ = 0.2 and cross-validation
(blue with “a-EWMA”), the exponentially weighted moving average with
λ = 0 and aggregation (orange with “EWMA-agg”), and the exponentially
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Figure 3: Differences of cumulative sums of squared prediction errors. (a)
The prediction horizon is η = 1; (b) η = 10. Time series Dt = SSPEt(f̂) −
SSPEt(f̂garch), where f̂ is the asymmetric GARCH (black with “a-GARCH”),
the cross-validated moving average with λ = 0 (red with “EWMA”) and
λ = 0.2 (blue with “a-EWMA”), the aggregated moving average with λ = 0
(orange with “EWMA-agg”) and λ = 0.2 (violet with “a-EWMA-agg”).

weighted moving average with λ = 0.2 and aggregation (violet with “a-
EWMA-agg”).8 Figure 4 has the same setting as Figure 3(a), but now
panel (a) shows the first half of the time series Dt, and panel (b) the second
half. Figure 5 has the same setting as Figure 3(b), but now panel (a) shows
the first half of the time series Dt, and panel (b) the second half.

We see that the sums of squared prediction errors are dominated by the
autumns 1987 and 2008. The basic GARCH(1, 1) has the best performance
until 1987, and after that the moving averages have a better performance.
The asymmetric GARCH(1, 1) performs worse than the moving averages
during almost all time periods. The asymmetric moving average performs
slightly better than the symmetric moving average. Aggregation of moving
averages seems to outperform the cross-validation.

Awartani and Corradi (2005) compare the various asymmetric GARCH
models to the standard GARCH(1, 1) in predicting squared returns, and they
find evidence that the asymmetric models improve the prediction.

8The cross-validation and aggregation are done using the grid γ = exp{−1/g}, where
g = 5, 10, 20, 30, 40 when η = 1 and g = 20, 30, 40, 60, 80, 100, 120, 140, 200, 300 when
η = 10.
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Figure 4: Differences of cumulative sums of squared prediction errors: η = 1.
(a) The first half of time series Dt and (b) the second half, where Dt is the
same as in Figure 3(a).
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Figure 5: Differences of cumulative sums of squared prediction errors: η =
10. (a) The first half of time series Dt and (b) the second half, where Dt is
the same as in Figure 3(b).
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4.3 Nonparametric Volatility Prediction

Pagan and Schwert (1990) and Pagan and Hong (1991) consider a nonpara-
metric volatility function σt(Rt−1, . . . Rt−p), which is a function of p previous
returns. Härdle and Tsybakov (1997) apply a local linear estimator for the
volatility function σt(Rt−1) and Härdle et al. (1998) consider the multivariate
case of p previous returns. Masry and Tjøstheim (1995) consider the kernel
regression estimator in a nonparametric ARCH model.

Audrino and Bühlmann (2001) considers nonparametric model

Rt = σtǫt, σ2
t = f(Rt−1, σ

2
t−1),

where f : R2 → R is the unknown function to be estimated, and proposes
tree-structured iterative estimation algorithms. Linton and Mammen (2005)
consider a general ARCH(∞) model defined by

σ2
t = α+

∞
∑

k=1

ψk(θ)m(Rt−k), (21)

where α ∈ R, θ ∈ Rp, and m : R → R is called a news impact curve. In the
special case ψj(θ) = θj−1, 0 < θ < 1, it holds that

σ2
t = θσ2

t−1 +m(Rt−1),

t = 1, 2, . . . .
Eberlein et al. (2003) consider uniformly weighted moving averages in

volatility modeling. Mercurio and Spokoiny (2004) consider uniformly weighted
moving averages of squared returns, whose window width is adaptively cho-
sen, and Chen et al. (2008) applies their method to volatility prediction.
Mishra et al. (2010) study a semiparametric estimator of conditional vari-
ance, which first computes residuals by dividing the observed returns with
parameteric estimates of the conditional standard deviation, and then applies
a kernel regression to the residuals.

Note that we mention in (30) a semiparametric model for stock prices
which could be used to analyze the kernel predictor.

4.4 Intraday Data and Realized Volatility

Let us define the realized volatility as the sum of squares of five minute
returns over one trading day:

RV(t, t+ 1) =

m
∑

i=1

R2
t+(i−1)∆,t+i∆, Rt,s = log(Ss/St),
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where ∆ is five minutes, and m is the number of five minute periods during
the day [t, t+1]. This realized volatility can be used to approximate integral
∫ t+1

t
σ2
u du in the continuous time model dPt = µtdt + σtdWt, where Pt =

log St, µt is the drift, σt is the volatility process, and Wt is the Brownian
motion; see Andersen et al. (2006, p. 818) and Chen and Ghysels (2012).
Besides predicting the realized volatility RV(t, t+1) several articles consider
predicting the longer horizon realized volatility

RV(t, t+ η) =

t+η−1
∑

i=t

RV(i, i+ 1),

where η ≥ 1.
Andersen et al. (2007) consider linear prediction in the model where pre-

dictors are past realized volatilities over horizons of one day, one week, and
one month:

RV(t, t+η) = α+β1RV(t−1, t)+β2RV(t−5, t)+β3RV(t−22, t)+ǫt+η. (22)

They consider also including the indicator of a jump as a predictive variable,
and replacing the realized volatility by bi-power variation. Chen and Ghysels
(2012) take the asymmetry into account by introducing semi-variance as
an explanatory variable, and also apply model (21) with intraday data for
modeling the realized volatility. Bekaert and Hoerova (2014) consider linear
model (22), and include the VIX index as an explanatory variable. Ghysels
et al. (2006), Forsberg and Ghysels (2006), and Corsi (2009) contain further
results of these type of models.

We have predicted random variables R2
t+η, but we conjecture that a sim-

ilar kernel regression could be used to predict RV(t+ η− 1, t+ η). Note that
using the explanatory variables RV(t − 1, t), RV(t − 5, t), and RV(t − 22, t)
in (22) is similar to using uniform moving averages of squared returns as
predictors.

We have defined the realized volatility from daily returns in (3), and pro-
posed an estimator in (4). We use an approach where the individual squared
returns are response variables, and a predictor for the realized volatility in
(4) is obtained by summing the predictors for the individual squared returns.
We believe that our approach has advantages compared to (22), where a long
horizon realized variance is taken as the response variable, because a differ-
ent procedure seems to be optimal depending on the return horizon of the
squared return. In particular, the window width of the moving average of
returns, which is used as a predictive variable (X2 is our notation), should
be larger when predicting squared returns with a longer prediction horizon.
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The kernel regression predictor is easy to extend by adding more explana-
tory variables, like the VIX index. Kernel regression suffers from the curse
of dimension when the number of explanatory variables is large, but using
four to five explanatory variables is possible, when the sample size is several
thousands of observations.

5 Evaluation of the Kernel Prediction

We compare the kernel regression predictor to the GARCH(1, 1) predictor.
GARCH(1, 1) can be considered as a workhorse of current risk manage-
ment. The comparisons of Section 4.2 indicate that the asymmetric ver-
sions of GARCH(1, 1) do not bring obvious improvements to the standard
GARCH(1, 1).

We compare the performance over all subperiods [t1, t2], where T1 ≤ t1 <
t2 ≤ T2, and [T1, T2] is the total time period, given in (5). Note however, that
the predictors are computed sequentially using data on the period [T1, t], for
t ∈ [t1, t2]. In most other studies only a couple of time periods are analyzed
(one time period containing a crisis and an other time period which does not
contain a crisis.)

5.1 Squared Prediction Error

We compare the differences of cumulative sums of squared prediction errors,
defined in (16). That is, we study time series SSPEt(f̂)−SSPEt(f̂garch), where

f̂ is a kernel regression predictor and f̂garch is the GARCH(1, 1) predictor.
We use two versions of kernel regression. The first version uses the moving

average of squared returns as an explanatory variable, as in (6). The second
version uses the GARCH(1, 1) volatility as an explanatory variable, as in
(10).

Figure 6 considers the prediction horizon η = 1. The orange time series
shows the case where f̂ is the kernel predictor with exponentially weighted
moving average (EWMA) volatility as the first explanatory variable as in
(6), with smoothing parameter g1 = 20. The black time series shows the
case where f̂ is the kernel predictor with GARCH(1, 1) volatility as the first
explanatory variable, as in (10). The smoothing parameter of the EWMA of
the returns is g2 = 10. Panel (b) shows the time series of the cross-validation
smoothing parameters for the kernel predictor with the GARCH(1, 1) volatil-
ity as the first explanatory variable (black), and the time series of the smooth-
ing parameter chosen by the normal reference rule in (15) (blue). Figure 7
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Figure 6: Prediction horizon η = 1. (a) Time series SSPEt(f̂) −
SSPEt(f̂garch). The explanatory variable is GARCH(1, 1) volatility (black)
and the exponentially weighted moving average (orange). (b) The time series
of chosen smoothing parameters h (black) and the time series of h for the
normal reference rule (blue).

zooms into the time series of Figure 6(a). Panel (a) shows the beginning of
the time series and panel (b) shows the end of the time series.

We see that the kernel regression beats GARCH(1, 1) rather constantly,
because the time series is almost monotonically decreasing. There are some
jumps in the time series. It seems that the exponentially weighted mov-
ing average of squared returns works slightly better than the GARCH(1, 1)
volatility as a predictive variable of the kernel regression.

Figure 8 considers the prediction horizon η = 10. Otherwise it is similar
to Figure 6. Figure 9 zooms into the time series of Figure 8(a). Panel (a)
shows the beginning of the time series and panel (b) shows the end of the
time series.

We see that the autumn 1987 favors the kernel predictor, and autumn
2008 favors the GARCH(1, 1) predictor. Otherwise, the time series is mostly
decreasing, which means that the kernel predictor has an advantage. The
period about 1975-1985 slightly favors GARCH(1, 1).

Figure 10 considers return horizon s = 10. Otherwise it is similar to
Figure 6. We predict R2

t,s, where Rt,s = St+s/St − 1. We see that the
kernel predictor performs mostly better, because the time series is almost
monotonically decreasing.
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Figure 7: Prediction horizon η = 1. Differences of cumulative sums of
squared prediction errors. (a) The beginning of the time series and (b)
the end of the time series. The explanatory variable is the GARCH(1, 1)
volatility (black) and the exponentially weighted moving average (orange).
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Figure 8: Prediction horizon η = 10. (a) Time series SSPEt(f̂) −
SSPEt(f̂garch). The explanatory variable is GARCH(1, 1) volatility (black)
and the exponentially weighted moving average (orange). (b) The time series
of chosen smoothing parameters h (black) and the time series of h for the
normal reference rule (blue).
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Figure 9: Prediction horizon η = 10. Differences of cumulative sums of
squared prediction errors. (a) The beginning of the time series and (b) the
end of the time series. The explanatory variable is the GARCH(1, 1) volatility
(black) and the exponentially weighted moving average (orange).
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Figure 10: Return horizon s = 10 and prediction horizon η = 1. (a) Time se-
ries SSPEt(f̂)−SSPEt(f̂garch). The explanatory variable is the GARCH(1, 1)
volatility (black) and the exponentially weighted moving average (orange).
(b) The time series of chosen smoothing parameters h (black) and the time
series of h for the normal reference rule (blue).
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5.2 Statistical Significance

It is of interest to find p-values for testing the hypothesis

H0 : E(Dt) = 0, H1 : E(Dt) < 0.

where

Dt = SSPEt(f̂)− SSPEt(f̂
garch) =

t
∑

i=t0+η

di,

with
di = (Ri − f̂(i− η))2 − (Ri − f̂ garch(i− η))2,

where f̂ is the kernel regression predictor and f̂ garch is the GARCH(1, 1)
predictor.

Random variables di are not identically distributed, because the sample
size used to construct the predictors f̂ and f̂ garch increases with i. Random
variables di are not independent. However, we can assume that di are ap-
proximately identically distributed, and that the dependence is weak. Then
it is possible to apply a central limit theorem to approximate the distribution
of Di.

Let us assume that di are identically distributed, so that

H0 : E(di) = 0, H1 : E(di) < 0.

Assume that E|di|
δ < ∞ and

∑∞
j=1 α

1−2/δ
j < ∞ for some constant δ > 2,

where αj are the α-mixing coefficients. For a notational simplicity, let us
take t0 + η = 1 (which abuses the notation). Then,

t−1/2
t
∑

i=1

(di −Edi)
d

−→ N
(

0, σ2
)

, (23)

as t→ ∞, where

σ2 =

∞
∑

j=−∞

γ(j) = γ(0) + 2

∞
∑

j=1

γ(j), (24)

γ(j) = Cov(di, di+j), and we assume that σ2 > 0. Ibragimov and Linnik
(1971, Theorem 18.4.1) gave necessary and sufficient conditions for a central
limit theorem under α-mixing conditions. A proof for our statement of the
central limit theorem in (23) can be found in Peligrad (1986); see also Fan
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and Yao (2005, Theorem 2.21) and Billingsley (2005, Theorem 27.4). To
estimate σ2 in (24) we use the sample variance9

σ̂2 = γ̂(0) = t−1
t
∑

i=1

(di − d̄)2,

where d̄ is the sequential sample mean.
Let us choose the test statistics

TS = t−1/2σ̂−1
t
∑

i=1

di.

Under H0,

TS
d

−→ N(0, 1),

as t→ ∞. Small values of the test statistics lead to the rejection of the null
hypothesis. Let the observed value of TS be equal to y. The p-value is equal
to P (TS < y) ≈ Φ(y), where Φ is the distribution function of the standard
normal distribution. The test statistics is along the lines of Diebold and
Mariano (1995) and West (1996). Giacomini and White (2006) proposes a
generalization of the test, which is discussed in the supplementary material.

Figure 11 shows level sets of function p(t1, t2), which assigns the p-value
to the period [t1, t2], where t1 is the beginning of the period, t2 is the end
of the period, and the length of the period is at least one year (250 trading
days). The red region shows the periods where p(t1, t2) ≤ 0.01. The orange
region adds the periods where p(t1, t2) ≤ 0.05. Panel (a) shows the case of
prediction horizon η = 1 day. Panel (b) shows the case of prediction horizon
η = 10 days. When η = 1, then the smallest p-values are obtained during
periods [t1, t2], where t1 is in the range 1990-2000 and t2 is in the range
1990-2010. When η = 10, then smallest p-values are obtained during a larger
collection of time periods: the smallest p-values are obtained during periods
[t1, t2], where t1 is in the range 1955-1990 and t2 is in the range 1990-2010.

9The sample variance leads to almost same results as

σ̂2 = γ̂(0) + 2

t−1
∑

j=1

w(j)γ̂(j), (25)

where γ̂(j) = 1
t

∑t−j
i=1

(

di − d̄
) (

di+j − d̄
)

, for j = 0, . . . , t − 1, d̄ is the sample mean, and
the weights are defined as w(j) = L(j/g), where L : [0,∞) → [0, 1] is a kernel function
satisfying L(0) = 1 and |L(x)| ≤ 1 for all x > 0. For example, L(x) = max{1 − x, 0}
and 1 ≤ g ≤ t. The sample variance is obtained by choosing L(x) = I[0,1)(x) and g = 1,
because then w(j) = 0 for j ≥ 1. The idea of using weights in asymptotic covariance
estimation can be found in Newey and West (1987).
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Figure 11: Image of p-values (a) Prediction horizon η = 1; (b) η = 10. The
red region shows the periods where p(t1, t2) ≤ 0.01. The orange region adds
the periods where p(t1, t2) ≤ 0.05.

6 The News Impact Curve

The news impact curve was introduced in Engle and Ng (1993). Linton
(2009) defines the news impact curve as the relationship between σ2

t and
yt−1 = y holding past values σ2

t−1 constant at some level σ2. For example, in
the GARCH(1, 1) model the news impact curve is

m(y, σ2) = α0 + α1y
2 + βσ2.

We study estimates of the regression function

f(x1, x2) = E(R2
t+η |X1 = x1, X2 = x2),

where x1 is the square root of the exponentially weighted moving average of
squared returns, and x2 is the exponentially weighted moving average of the
returns. A close relative to the news impact curve is a slice

x2 7→ f(x1, x2),

where x1 is fixed. In this function the argument x2 is not a one day return
but a moving average of past returns.

Figure 12 shows plots of a regression function estimate for prediction hori-
zon η = 1. Panel (a) shows a contour plot and panel (b) shows a perspective

23



−4 −2 0 2 4

−
4

−
2

0
2

4

 2e−04 

 2e−04 

 4e−04 

 6e−04 

 8e−04 
 0.001 

 0.0016 

MA of squared returns

M
A

 o
f 
re

tu
rn

s

(a)

MA of squared re
turns

−2

0

2

M
A

 o
f re

tu
rn

s

−2

0

2

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Figure 12: Plots of the regression function estimate. (a) A contour plot and
(b) a perspective plot,

plot. The smoothing parameter of the moving average of squared returns is
g1 = 20 and the smoothing parameter of the moving average of returns is
g2 = 10. The smoothing parameter of the kernel regression is h = 0.3.

Figure 13 shows slices of the regression estimate of Figure 12. Panel (a)
shows slices x1 7→ f̂(x1, x2) for several values of x2. Panel (b) shows slices
x2 7→ f̂(x1, x2) for several values of x1. Now we have scaled the arguments
from the range of the standard normal distribution to the original range of
moving averages of squared returns and moving averages of returns.

Figure 14 shows three slices x2 7→ f̂(x1, x2) for (a) a low value of x1, (b)
x1 close to zero, and (c) a large value of x1. Previous studies have found
nonsymmetric u-shaped news impact curves. The nonsymmetry is such that
a moderately positive previous day return leads to a next day smaller than
average volatility; see Linton and Mammen (2005, Figure 4) and Chen and
Ghysels (2012, Figures 1-3). We observe a similar nonsymmetric u-shape.
In addition, we can study how the previous volatility changes the shape of
the news impact curve. A low previous volatility in panel (a) leads to a
news impact curve which takes larger values for high returns than for small
returns. A high previous volatility in panel (c) leads to a news impact curve
which takes smaller values for high returns than for small returns.
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Figure 13: Slices of the regression function estimate. (a) Slices x1 7→ f̂(x1, x2)
for several values of x2. (b) Slices x2 7→ f̂(x1, x2) for several values of x1.
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Figure 14: Slices x2 7→ f̂(x1, x2) of the regression function estimate. (a) A
low value of x1, (b) a value of x1 close to zero, and (c) a large value of x1.
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7 Estimation of Conditional Quantiles

We apply volatility prediction to quantile estimation. The pth conditional
quantile is defined as

qt+1 = inf {x ∈ R : Ft+1(x) ≥ p},

where Ft+1(x) = P (Rt+1 ≤ x |Rt, Rt−1, . . .) is the conditional distribution
function of the return Rt+1 = St+1/St − 1 and 0 < p < 1. For a continuous
distribution function the pth quantile x satisfies Ft+1(x) = p, and the pth
conditional quantile is equal to

qt+1 = F−1t+1(p),

where F−1t+1 : (0, 1) → R is the inverse of the distribution function. Note
that the in the noncontinuous case the quantile is the generalized inverse of
Ft+1, denoted often as F←t+1(p) = inf {x ∈ R : Ft+1(x) ≥ p}; see McNeil et al.
(2005, p. 39).

Quantiles have a direct interpretation in risk management: the pth quan-
tile is the smallest value x such that the probability that the return is
smaller or equal to x is larger or equal to p. Define the loss of a portfo-
lio as Lt+1 = −(St+1 − St), where St is the value of the portfolio at time t.
An upper quantile of the distribution of the loss is called the value-at-risk.
The value-at-risk is the smallest value x such that the probability that the
loss is larger than x has a probability less than 1− p.

In quantile estimation it seems to be of a lesser interest to estimate the
conditional quantile of Rt+η for η > 1. Instead, it is of interest to estimate
the conditional quantile of R(t, s) = St+s/St − 1, where s ≥ 1 is the return
horizon. We do this by moving to a lower frequency data.

7.1 Performance Measurement in Quantile Estimation

Define the loss function for quantile estimation as

ρp(x) = x [p− I(−∞,0)(x))] =

{

x(p− 1), if x < 0,
xp, if x ≥ 0,

(26)

for 0 < p < 1. For p = 1/2 we have ρp(x) = |x|/2, but we are interested in
cases where p is close to zero. To compare two quantile estimators q̂1 and q̂2

we compute the difference of the cumulative sums of losses. Denote

Dt = SLt(q̂
1)− SLt(q̂

2),
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where

SLt(q̂) =
t−1
∑

i=t0

ρp (Ri+1 − q̂i+1),

where t0+1 ≤ t ≤ T . We begin to evaluate the performance of the estimator
after t0 observations are available, because any estimator can behave errati-
cally when only a couple of observations are used for its construction. When
Dt1 > Dt2 , then estimator q̂1i performs better on time period [t1, t2] than
estimator q̂2i . Thus, a single time series plot of Dt reveals all time periods
where the first estimator is better than the second estimator, as explained
in the connection of (16). An alternative performance measure in quantile
estimation is the use of the number of exceedances, which is discussed in the
supplementary material.

7.2 Quantile Estimation Using Volatility Prediction

Let us write the return as
Rt = µt + σtǫt,

where µt is the conditional mean and σt is the conditional standard deviation.
For the financial returns the signal (the expected return) is typically of a
lower order than the noise, and thus in quantile estimation the location µt

can usually be ignored. We do not ignore µt but use the sample mean to
estimate µt, instead of using any more sophisticated methods. We use the
conditional quantile estimator

q̂t+1 = µ̂t+1 + σ̂t+1 q̂(ǫ), (27)

where µ̂t+1 is the prediction of Rt+1, σ̂t+1 is the predicted volatility (an esti-
mator of the conditional standard deviation of Rt+1), and q̂(ǫ) is an estimator
of the pth quantile of the distribution of ǫt = (Rt − µt)/σt.

We consider two cases. First,

q̂(ǫ) =

√

ν − 2

ν
t−1ν (p), (28)

where tν is the distribution function of the t-distribution with ν degrees of
freedom, ν > 2. Second, q̂(ǫ) is the pth empirical quantile of the residuals.
The residuals are

ǫ̂1 = (R1 − µ̂1)/σ̂1, . . . , ǫ̂t = (Rt − µ̂t)/σ̂t.

We define the empirical quantile as

q̂(ǫ) = ǫ̂(⌈tp⌉), (29)
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where ǫ̂(1) < · · · < ǫ̂(t) are the ordered residuals, and ⌈x⌉ is the smallest
integer ≥ x. The empirical quantile is obtained from the generalized inverse
of the empirical distribution function. Thus, the use of an empirical quantile
of residuals makes sense only in the conditional quantile estimation. The
method of using empirical quantiles of residuals was suggested in Fan and
Gu (2003).

Chen et al. (2008) models the distribution of the residuals using the hyper-
bolic family of distributions, and uses as the volatility predictor the adaptive
moving average of Mercurio and Spokoiny (2004).

7.3 Smoothing Parameter Selection

The smoothing parameter can be chosen similar to (14), but replacing the
squared prediction error with the loss of the quantile estimation. We choose
the smoothing parameter h minimizing

CVt(h) =

t−1
∑

i=t0

ρp (Ri+1 − q̂i+1(h)),

where t0 + 1 ≤ t ≤ T , and q̂i+1(h) is a quantile estimator whose kernel
regression predictor has smoothing parameter h.

7.4 Quantile Estimation for S&P 500

We estimate the quantile for level p = 1%.
Figure 15 considers estimation of the quantiles of Rt+1 = St+1/St − 1.

Panel (a) shows time series SLt(q̂) − SLt(q̂
garch), where q̂ is the conditional

quantile estimator with the kernel regression predictor and q̂garch is the con-
ditional quantile estimator with the GARCH(1, 1) predictor. We consider
the case (28) with Student residuals with degrees of freedom ν = 5 (black),
and the case (29) with the empirical quantiles (orange). Panel (b) shows the
time series of cross-validated smoothing parameter h, for the case of Student
residuals (black), empirical quantiles (orange), and the curve of smoothing
parameters corresponding to the normal reference rule (blue). The first pre-
dictive variable of the kernel regression predictor is the moving average of
squared returns with smoothing parameter g1 = 20, and the second predictive
variable is the moving average of returns with smoothing parameter g2 = 10.
We see that the kernel predictor performs better than the GARCH(1, 1) pre-
dictor during almost all time periods, but autumn 2008 is a time where the
GARCH(1, 1) predictor performs better.
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Figure 15: One day returns. (a) Time series SLt(q̂) − SLt(q̂
garch) with Stu-

dent residuals (black) and empirical quantiles (orange). (b) Time series of
cross-validation smoothing parameters for Student residuals (black), empiri-
cal quantiles (orange), and the smoothing parameters of the normal reference
rule (blue).

Figure 16 considers estimation of the conditional quantiles of Rt,s =
St+s/St − 1 for s = 10, but is otherwise similar to the setting of Figure 15.
We see that with empirical quantiles the kernel predictor performs better
than the GARCH(1, 1) predictor, during almost all time periods. With the
Student residuals the GARCH(1, 1) predictor performs slightly better than
the kernel predictor. The autumn 2008 does not have such a large impact
for return horizon s = 10 as it has for horizon s = 1.

8 Conclusion

We summarize the main contributions of the article.

1. We have studied a kernel regression predictor of squared returns.

(a) The kernel regression predictor performs well when compared to
the GARCH(1, 1) volatility predictor, in terms of the squared pre-
diction error and when applied in the estimation of conditional
quantiles.

(b) The predictor is semiparametric. It is not tailored for modeling
returns of a particular financial asset. We conjecture that the ker-
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Figure 16: Ten day returns. (a) Time series SLt(q̂) − SLt(q̂
garch) with Stu-

dent residuals (black) and empirical quantiles (orange). (b) Time series of
cross-validation smoothing parameters for Student residuals (black), empiri-
cal quantiles (orange), and the smoothing parameters of the normal reference
rule (blue).

nel regression predictor performs well in predicting the volatility
of also other than S&P 500 returns.

(c) The kernel regression predictor estimates a two-dimensional re-
gression function, which gives insight how the future volatility de-
pends on the past volatility and on the past returns. In particular,
“news impact functions” are obtained as slices of the regression
function.

(d) The kernel regression predictor is easy to extend by adding more
explanatory variables. The additional predictive variables could
be macro economic variables, which contain information which is
not included in the past returns.

2. We have applied a transformation of the design distribution to have
standard normal marginals. This transformation is likely to be useful
in many regression problems.

3. We have analyzed the predictive performance over all time periods. The
visual tool of using level sets of a two-dimensional function of p-values
is likely to be useful in the analysis of many prediction problems.

30



4. The recursive definition of the asymmetric exponentially weighted mov-
ing average in (20) might be new.

Our focus has been on prediction. The analysis of the asymptotic prop-
erties of the predictor falls out of the scope of the article. However, we con-
jecture that the kernel predictor of volatility could be analyzed in the semi-
parametric stochastic volatility model Rt = σtǫt, where {ǫt} is an IID(0, 1)
process and

σ2
t = f(st, mt),

s2t = α0 + α1R
2
t−1 + βs2t−1, (30)

mt = (1− γ)Rt−1 + γmt−1,

where f : R2 → R is a nonparametric function, α0 > 0, α1 ≥ 0, β ≥ 0,
α1 + β < 1, and 0 < γ < 1. This model has some similarities with the single
index model for conditional expectations, for example.
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Härdle, W. and Tsybakov, A. B. (1997), ‘Local polynomial estimators of
the volatility function in nonparametric autoregression’, J. Econometrics

81, 223–242.
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pp. 193–223.

Silverman, B. W. (1986), Density Estimation for Statistics and Data Analy-

sis, Chapman and Hall, London.

West, K. D. (1996), ‘Asymptotic inference about predictive ability’, Econo-
metrica 64, 1067–1084.

34


