
Level Set Tree Methods

Jussi Klemelä∗

Article Type:

Advanced Review

Abstract

Level set trees provide a tool for analyzing multivariate functions. Level set trees are
particularly efficient in visualizing and presenting properties related to local maxima and
local minima of functions. Level set trees can help statistical inference related to
estimating probability density functions and regression functions, and they can be used in
cluster analysis and function optimization, among other things. Level set trees open a new
way to look at multivariate functions, which makes the detection and analysis of
multivariate phenomena feasible, going beyond one- and two-dimensional analysis.

∗jussi.klemela@gmail.com

1

GRAPHICAL TABLE OF CONTENTS

INTRODUCTION

Level set tree methods provide tools to study properties of a multivariate function f : Rd →

R with the help of mapping

λ 7→ Λ(f, λ),

which assigns level sets

Λ(f, λ) = {x ∈ R
d : f(x) ≥ λ}

to the levels λ ∈ R. Sometimes ”level set” is used to denote the contour C(f, λ) = {x ∈

R
d : f(x) = λ}. Set Λ(f, λ) is sometimes called “superlevel set”.

A level set tree of function f : Rd → R is a tree whose nodes are identified with the

connected components of the level sets Λ(f, λ) of f . A child-parent relation of a level set tree

corresponds to the set inclusion. The root of the tree is the support of f . A finite number of

levels λ is necessary in order to obtain a tree with a finite number of nodes, although further

regularity conditions are needed to guarantee a finite number of nodes. (For example, the

indicator function of rationals leads to an infinite number of nodes.

A level set tree can be defined recursively: (1) The root of the tree corresponds to the

support of the function. If the support is not a connected set, then there are several roots

and we define a separate level set tree for each root. (2) The child nodes of a given node m

are obtained from the level set whose level is one step above the level of the node m. We

need to restrict ourselves to the part of the level set which is a subset of the set associated

with node m. This subset is decomposed into connected components and these connected

components are the child nodes of node m. The leaf nodes of a level set tree correspond to

the local maxima of the function.

We use the term “level set tree” to denote a decorated tree, whose nodes are associated

with levels and with subsets of Rd (connected components of level sets). Thus, when a

function is represented with a level set tree, the only loss of information comes from the fact

that only a finite number of levels is used. The recursive process of building a level set tree

is illustrated later in Figure 1, where a contour plot is associated with a level set tree.

2

Level set trees help to detect and visualize such features of a function as the number, sizes,

and locations of the local maxima. To study local minima of function f we can construct a

level set tree for −f , or study the tree of sublevel sets {x ∈ R
d : f(x) ≤ λ}. It may also be

useful to study the mapping λ 7→ C(f, λ) = {x ∈ R
d : f(x) = λ}, since this mapping gives

information simultaneously about local minima and maxima.

Level set tree methods have been used by separate communities, in the study of statistics,

machine learning, computational topology, topological data analysis, scientific visualization,

and function optimization. Typically different communities are not aware of the work which

has been done by another community. We try to provide some references which go beyond

statistical literature, although we concentrate on those applications of level set trees where

statistically interesting functions like probability density functions and regression functions

are analyzed.

The figures of the article can be reproduced using the instructions and software in

http://jussiklemela.com/art/wires.

Visualizing Functions

A level set tree is a tree whose nodes are associated with connected components of level sets.

Visualizations are obtained by utilizing some information about the connected components,

like levels, volumes, and barycenters.

Tree Plots

Level set trees visualize the complete tree structure of the level sets. In a tree plot the nodes

correspond to the connected components of a level set, height of a node correspond to the

level λ of the level set, and the parent-child relations are indicated by lines connecting the

nodes.

Volume Functions

The nodes of a level set tree can be decorated with information about the properties of the

set which is associated to the node. A volume function is obtained by decorating a node with

3

the volume of the associated set. A volume function is a one-dimensional function, whose

level set tree has the same tree structure as the original d-dimensional function. In addition,

the connected components of the level sets of a volume function have the lengths equal to the

volumes of the corresponding connected components of the original d-dimensional function.

Klemelä (2004b)

Adding some notation, let the original function f : Rd → R have level sets Λ1, . . . ,ΛN ⊂

R
d. Then the nodes of the level set tree correspond to connected components A1, . . . , AM

of these level sets, where M ≥ N , because each level set Λi can be written as a union of

some sets Ai. Now the volume function volume(f) : R → R is such that the level set tree of

volume(f) is otherwise the same as the level set tree of f , but the nodes are associated with

intervals B1, . . . , BM ⊂ R. We have always

volume(Ai) = volume(Bi),

where the volume of a set is the Lebesgue measure of the set, and in particular, the volume

of an interval is the length of the interval. Since the level set tree of volume(f) and f are

the same, it holds that

Ai ⊂ Aj if and only if Bi ⊂ Bj

and

Ai ∩Aj = ∅ if and only if Bi ∩ Bj = ∅,

which cover the two possible relations between the sets associated to the nodes of a level set

tree.

The volume function volume(f) : R → R visualizes the largeness of the modes of the

function f : Rd → R, in addition to showing the mode structure. The largeness of the modes

is defined using the concept of excess mass of Hartigan (1987) and Müller and Sawitzki

(1991). Namely, it holds that

∫

A

(f − λ) =

∫

B

(volume(f)− λ),

where A ⊂ R
d is a connected component of level set Λ(f, λ) and B ⊂ R is the set associated

to a node of the level set tree of volume(f), B being such that the node of B corresponds to

4

the node of A. Since level set trees of f and volume(f) have the same structure, there is a

bijective correspondence between the nodes of these trees.

Since f(x) ≥ λ for x ∈ A ⊂ Λ(f, λ), the integral
∫

A
(f − λ) is equal to the volume of the

area
{

(x, y) ∈ R
d+1 : x ∈ A, y ≤ f(x)

}

.

This is the area that is delineated by the hyperplane y = λ and the restriction of the graph

of f to A. Note that the excess mass over λ can be defined as the volume of the area

{

(x, y) ∈ R
d+1 : f(x) ≥ λ, y ≤ f(x)

}

,

but we are more specifically interested in the excess mass associated with the connected

components A of the level set Λ(f, λ).

Barycenter Plots

A barycenter plot is otherwise similar to a simple tree plot, but now the x-coordinate of

a node is equal to the ith coordinate of the barycenter of the connected component of a

level set which corresponds to the node. There are d different barycenter plots, each plot

corresponding to the choice of the coordinate i = 1, . . . , d. Klemelä (2004b)

The barycenter of set A ⊂ R
d is the center of mass of A, defined as

∫

A
x dx/

∫

A
dx ∈ R

d.

The barycenter is the mean of the uniform distribution on A.

For the integral
∫

A
x dx to be well defined, the boundedness of A is a sufficient condition.

It is also a necessary condition, in the sense that the integral is not defined, if there does not

exist a ball Br(µ) = {x : ‖x− µ‖ ≤ r} such that A \Br(µ) has measure zero.

A 2D Example of Function Visualization

Figure 1 shows six different ways to visualize a 2D function. Panel (a) shows a perspective

plot, panel (b) shows a contour plot, panel (c) shows a tree plot, panel (d) shows a plot of

a volume function, panel (e) shows a barycenter plot of the first coordinate, and panel (f)

shows a barycenter plot of the second coordinate. Each visualization has its advantages and

its disadvantages. A perspective plot shows only one side of the function, and we need to

look at the function from several directions. A contour plot does not give visual information

5

about the levels of the contours. (Which local extremes are local maxima and which are

local minima?) A tree plot and a plot of the volume function do not provide information

about the spatial location of the local maxima, but the volume function provides information

about the sizes of the local maxima. The barycenter plots enhance the tree plot by providing

information about the spatial location of the local maxima.

A perspective plot and a contour plot are defined only for two-dimensional functions

f : R2 → R, whereas methods in panels (c)–(f) work in any dimension. However, a mul-

tivariate function can be visualized with perspective plots and contour plots of the two-

dimensional slices and projections of the multivariate function. (Here we mean by slices of

f : Rd → R functions of type (x1, x2) 7→ f(x1, x2, a3, . . . , ad), where a3, . . . , ad are fixed, and

by projections of f functions of type (x1, x2) 7→
∫

Rd−2 f(x1, x2, x3, . . . , xd)dx3 · · ·dxd. In the

case f is a density function the projections are called marginal densities.)

6

X1

−4
−2

0
2

4
6

X
2

−4

−2

0

2

4
6

0.00

0.01

0.02

0.03

(a)

 0.005

 0.01

 0.015

 0.02

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

X1

X
2

(b)

M2

M3

M1

0
.0

0
0
.0

1
0
.0

2
0
.0

3

M1 M2

M3

(c)

0 50 100 150

0
.0

0
0
.0

1
0
.0

2
0
.0

3
M1M2

M3

volume
(d)

−2 −1 0 1 2 3

0
.0

0
0
.0

1
0
.0

2
0
.0

3

M1M2

M3

X1
(e)

−3 −2 −1 0 1 2

0
.0

0
0
.0

1
0
.0

2
0
.0

3

M1 M2

M3

X2
(f)

Figure 1: (a) A perspective plot; (b) a contour plot; (c) a tree plot; (d) a plot of a volume

function; (e) a barycenter plot of the first coordinate; (f) a barycenter plot of the second

coordinate. 7

A 3D Example of Function Visualization

Figure 2 and Figure 3 show different ways to visualize a 3D function.

Figure 2 visualizes the 3D function using 2D projections and slices. Panel (a) shows a

contour plot of the projection (x1, x2) 7→
∫

∞

−∞
f(x1, x2, x3)dx3. Panel (b) shows a contour

plot of the slice (x1, x2) 7→ f(x1, x2, 0). Panel (c) shows a contour plot of the projection

(x1, x3) 7→
∫

∞

−∞
f(x1, x2, x3)dx2. Panel (d) shows a contour plot of the slice (x1, x3) 7→

f(x1, 0, x3). Panel (e) shows a contour plot of the projection (x2, x3) 7→
∫

∞

−∞
f(x1, x2, x3)dx1.

Panel (f) shows a contour plot of the slice (x2, x3) 7→ f(0, x2, x3). We see that the slices do

not reveal the local maxima, and more slices would be needed to do that. The projections

reveal the local maxima, but some care is needed to identify the local maxima across the

three panels.

Figure 3 applies level set trees. Panel (a) shows a tree plot, panel (b) shows a plot of

a volume function, panel (c) shows the upper part of the volume function, panel (d) shows

a barycenter plot of the first coordinate, panel (e) shows a barycenter plot of the second

coordinate, and panel (f) shows a barycenter plot of the third coordinate. The local maxima

can be easily identified, and information about the size of the maxima is obtained from the

volume function.

8

 0.005

 0.01

 0.015

 0.03

−4 −2 0 2 4

−
4

−
2

0
2

4

X1

X
2

M2

M3

M1M4

(a)

 5e−04

 0.001

 0.0015

 0.002

−4 −2 0 2 4

−
4

−
2

0
2

4

X1

X
2

M2

M3

M1M4

(b)

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014
 0.016

−4 −2 0 2 4

−
4

−
2

0
2

4

X1

X
3

M2

M3

M1

M4

(c)

 5e−04

 0.001

 0
.0

0
1
5
 0.002

−4 −2 0 2 4

−
4

−
2

0
2

4

X1

X
3

M2

M3

M1

M4

(d)

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.014

 0
.0

16

−4 −2 0 2 4

−
4

−
2

0
2

4

X2

X
3

M2

M3

M1

M4

(e)

 5e−04
 0.001

 0.0015

 0
.0

02
 0

.0
0
3

−4 −2 0 2 4

−
4

−
2

0
2

4

X2

X
3

M2

M3

M1

M4

(f)

Figure 2: Contour plots of (a) projection (x1, x2) 7→
∫

∞

−∞
f(x1, x2, x3)dx3; (b) slice (x1, x2) 7→

f(x1, x2, 0); (c) projection (x1, x3) 7→
∫

∞

−∞
f(x1, x2, x3)dx2; (d) slice (x1, x3) 7→ f(x1, 0, x3);

(e) projection (x2, x3) 7→
∫

∞

−∞
f(x1, x2, x3)dx1; (f) slice (x2, x3) 7→ f(0, x2, x3).

9

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

M1
M2

M3
M4

(a)

0 500 1000 1500

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

volume
(b)

800 850 900

0
.0

0
2

0
.0

0
4

0
.0

0
6

M1
M2

M3
M4

volume
(c)

−3 −2 −1 0 1 2 3

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

M1
M2

M3
M4

X1
(d)

−3 −2 −1 0 1 2

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

M1
M2

M3
M4

X2
(e)

−3 −2 −1 0 1 2 3

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

M1
M2

M3
M4

X3
(f)

Figure 3: (a) A tree plot; (b) a plot of a volume function; (c) a plot of the upper part of

the volume function; (d) a barycenter plot of the 1st coordinate; (e) a barycenter plot of the

2nd coordinate; (f) a barycenter plot of the 3rd coordinate.

10

Level Set Trees and Density Estimation

Some special issues arise when level set trees are constructed for a probability density function

f : R
d → R. The density function f of a probability distribution P is defined by the

property that for each measurable A ⊂ R
d we have P (A) =

∫

A
f . Any function f : Rd → R

satisfying f ≥ 0 and
∫

Rd f = 1 is a density function of some probability distribution. Not

every probability distribution has a density function.

Estimation of a Level Set Tree

The probability density function f is unknown, and the level sets of f have to be estimated us-

ing (approximately) independent and identically distributed observations X1, . . . , Xn, where

each Xi ∈ R
d is distributed according to density f .

Level set estimators which are useful for the construction of a level set tree can be divided

at least into four categories: (1) plug-in-estimators, (2) union of balls and related estimators,

(3) union of polyhedrons and related estimators, and (4) estimators defined as optimizers of

the empirical excess mass.

A plug-in estimator of a level set takes the estimate to be a level set of a density estimate.

Convergence rates of plug-in-estimators, when the density estimator is the kernel estimator,

has been studied in many articles; see Báıllo et al. (2000), Báıllo et al. (2001), Cuevas et al.

(2000, 2001), Baillo (2003), Cadre (2006), Cuevas et al. (2006),

Biau et al. (2007), Burman and Polonik (2009), Mason and Polonik (2009), Rigollet and Vert

(2009), Singh et al. (2009), Rinaldo and Wasserman (2010), Mammen and Polonik (2013),

Steinwart (2015). Rinaldo and Wasserman (2010) estimate the level sets using the level sets

of a kernel estimator and their theory applies to probability distributions that have nons-

mooth Lebesgue densities or do not even admit a density. Holmström et al. (2017) estimate

and compute a level set tree and a volume function using an adaptive discretization of a

kernel density estimator. First, an adaptive partition of the sample space is constructed

with the help of a greedy splitting algorithm. The size of the adaptive partition is typically

equal to the sample size n, but it can be chosen to have a smaller size. Each member of the

partition is a d-dimensional rectangle. Second, a kernel density estimator is evaluated at the

11

centers of the members of the partition. This leads to a piecewise constant approximation of

the kernel estimator. This method of grid construction can be considered as an attempt to

find a partition into rectangles that best approximates the Voronoi partition. The Voronoi

partition is the collection of the Voronoi cells. For a sample of points X1, . . . , Xn the Voronoi

cell of Xi is the set of those x ∈ R
d which are closer to Xi than to the other points Xj , j 6= i.

A union of balls estimator of a level set finds those observations where a density estimator

takes a value which is larger of equal to the level λ of the level set. The estimator is the union

of the balls whose centers are equal to these observations. Walther (1997) removes certain

balls near the boundary to remove bias. The union of balls estimator is equal to the level

set of a kernel estimator only when λ = 0 (so that the support is estimated) and the support

of the kernel function is a ball. Devroye and Wise (1980) and Cuevas and Rodriguez-Casal

(2004) study asymptotics of a union of balls estimator of the support. There are fast

algorithms to compute the corresponding level set tree when the level sets are unions of

balls, but the computation of the volume function is difficult, because the computation of

the volume of a union of balls poses computational challenges.

A union of polyhedrons estimator has been applied in topological data analysis, when

the support A of a uniform probability distribution is estimated using Delaunay partitions

(triangulations); see Zomorodian (2012). A sample of independent and identically distributed

observations from a uniform distribution whose support is set A ⊂ R
d is called point cloud

data. The Delaunay triangulation is the collection of simplices with d+ 1 vertices when the

vertices are the data points. Note that a Delaunay partition and a Voronoi partition are

“dual” to each other. The number of simplices in the Delaunay partition grows exponentially

with the dimension of the observations; see McMullen (1970). Thus, Delaunay partitions

are computationally expensive, or unfeasible. Azzallini and Torelli (2007) apply Delaunay

partitions in level set estimation. Aaron and Bodart (2016) reduce the number of sets in the

partition by taking only those simplices which fit inside a small ball, or only those simplices

which are such that the lengths of all edges are small.

A level set estimator can be defined as a minimizer of the empirical excess mass. The

excess mass criterion was proposed by Hartigan (1987) and Müller and Sawitzki (1991), and

studied by Nolan (1991) and Polonik (1995), who derive rates of convergence for support

12

estimation based on excess mass estimates. Mammen and Tsybakov (1995) study density

support problem under a general setting of entropy conditions and their set up includes

regions with boundaries that satisfy smoothness conditions (Dudley classes) and convex

sets. Tsybakov (1997) extends the results to level set estimation. Klemelä (2004a) applies a

recursive splitting algorithm to minimize an empirical excess mass in support estimation.

The level set estimators that could be applied to construct a level set tree should be such

that they are able to estimate level sets with many connected components, which excludes

the use of the convex hull estimator, and the piecewise polynomial estimator of the boundary

function of a star shaped level set; see Korostelev and Tsybakov (1993).

Mode Detection

Level set trees can be combined with formal statistical mode testing procedures. In mode

testing the purpose has been to test the existence of local maxima of a density function

against to the null hypothesis of unimodality. Level set trees lead naturally to mode testing

where the existence of several connected components of a level set is tested against the

null hypothesis of a single component. The “branching map” is a related graphical tool,

introduced by Klemelä (2009, Chapter 7.2).

Density Based Clustering

Density based clustering can be implemented with the help of level set trees. In density

based clustering the clusters consist of observations that are inside a connected component

of a level set. It is not enough to look at only one level set and its connected components,

and that is why level set trees can be helpful, because a level set tree describes the complete

tree structure of level sets; see Klemelä (2009).

Density based clustering was proposed by Wishart (1969) and Hartigan (1975), who

defined clusters as regions of high density, separated from other such regions by regions of low

density. Density based clustering has been reviewed in several articles; see Fraley and Raftery

(2002) and Kriegel et al. (2011). Chacón (2015) studies the exact definition of the population

goal of the density based clustering, and defines the goal as a collection of high density

regions.

13

Stuetzle (2003) defines a cluster tree as a level set tree whose levels are such that the

topology of the level set is changing at those levels. When the node of a level set tree is

associated with set A ⊂ R
d, then the node of a cluster tree is associated with observations

satisfying Xi ∈ A. We use below the term “cluster tree of observations” to highlight that

the nodes of a cluster tree are associated with subsets of observations. Level set trees of

density functions generate high-density sample regions, whereas cluster trees of observations

generate high-density clusters of data points.

Figure 4(a) shows a scatter plot of points in R
2, which is generated from a density

function f : R2 → R. In fact, the function visualized in Figure 1 is a kernel density estimate

of f , constructed using the data in the scatter plot. Panel (b) shows a corresponding colored

scatter plot. The observations in the same branch of the level set tree have the same color.

The colors are the same as in Figure 1. The colored scatter plot suggests several possible

clusterings of the observations.

−6 −2 2 4 6

−
6

−
2

2
6

X1

X
2

(a)

−6 −2 2 4 6

−
6

−
2

2
6

X1

X
2

(b)

Figure 4: (a) A scatter plot of points, whose density is estimated in figure 1; (b) a colored

scatter plot which groups those observations together, which are in the same branch of the

level set tree.

Figure 5 shows a typical approach to density based clustering, which uses the connected

14

components of a level set with level λ to determine the clusters. Panel (a) shows the volume

function together with a level λ which leads to two clusters, colored with blue and orange

in panel (b). Panel (c) has a higher level λ which leads to three clusters, colored with blue,

red, and green in panel (d).

0 50 100 150

0
.0

0
0
.0

2

(a)

−6 −4 −2 0 2 4 6

−
6

−
2

2
4

6

X1

X
2

(b)

0 50 100 150

0
.0

0
0
.0

2

(c)

−6 −4 −2 0 2 4 6

−
6

−
2

2
4

6

X1

X
2

(d)

Figure 5: (a) A volume function with the level to determine clusters; (b) a scatter plot

with the corresponding two clusters; (c) a volume function with a higher level to determine

clusters; (d) a scatter plot with the corresponding three clusters.

Figure 6 shows a different approach to choose clusters than in Figure 5, where a fixed

15

level λ was used. There is no universal rule that level λ should be constant, but it can

be different in different branches of the level set tree. Panel (a) shows two different levels,

chosen according to the branching of the level set tree. Panel (b) shows the corresponding

three clusters.

0 50 100 150

0
.0

0
0

.0
2

(a)

−6 −2 2 4 6

−
6

−
2

2
6

X1

X
2

(b)

Figure 6: (a) A volume function with two levels to determine clusters; (b) a scatter plot with

the corresponding three clusters.

Level Set Trees and Regression Function Estimation

We define regression function f : Rd → R as the conditional expectation f(x) = E(Y |X =

x), where Y ∈ R is the response variable and X ∈ R
d is the vector of explanatory vari-

ables. The regression function is unknown and has to be estimated using (approximately)

independent and identically distributed observations (X1, Y1), . . . , (Xn, Yn).

The local maxima of the regression function occur for those x-values for which the re-

sponse variable takes typically large values. The local minima of the regression function

occur for those x-values for which the response variable takes typically small values. Thus,

we are interested both in the local maxima and in the local minima of a regression function.

This is in contrast to the case of a density function, for which we are typically interested

16

only in the local maxima, which occur in the areas of the concentration of the probability

mass.

In regression analysis we are also interested in the partial effects of the explanatory

variables. The partial effect of the first explanatory variable x1 is defined as the partial

derivative D1f(x) = ∂/∂x1f(x). The partial effect is positive in those areas of x-values for

which increasing x1 typically increases the value of the response variable. The local maxima

of the partial derivative D1f occur for those x-values for which the partial effect of x1 is

large, assuming that there is a positive partial effect. Thus it is of interest to draw level set

trees of D1f .

Algorithms for the Computation of a Level Set Tree

Computation of a level set tree of a function f : Rd → R requires the evaluation of the

function at a finite number of points x1, . . . , xm ∈ R
d. Algorithms can be classified by their

approach to choose the points x1, . . . , xm. Often a regular equispaced grid (dense mesh) is

chosen, but then the number of points grows exponentially when the dimension d increases.

An early algorithm for the computation of a level set tree used the disjoint-set data

structure, which is also known as the union-find data structure; see Carr et al. (2003) and

Tarjan (1976). The purpose was to compute a Reeb graph, which is a graph whose leaf

vertices represent the local minima or maxima, and each interior vertex represent the joining

or splitting of the contours of the function, when a contour of a function is defined as

{x ∈ R
d : f(x) = λ}, where λ ∈ R; see Reeb (1946). The computation of a Reeb graph can

be done by first computing a level set tree and a lower level set tree. A lower level set tree is

otherwise similar to a level set tree, but its nodes correspond to the connected components of

sublevel sets {x ∈ R
d : f(x) ≤ λ}. The level set tree and the lower level set tree are pruned

so that all the other nodes are removed but the leaf nodes and the nodes with more than

one child. (The pruned level set tree is called the split tree and the pruned lower level set

tree is called the join tree.) Finally, the pruned trees are merged to obtain the Reeb graph.

17

Algorithms for Cluster Trees

Algorithms for the computation of a cluster tree of observations can sometimes be applied

for the computation of a level set tree. This happens when the level sets are estimated as

unions of balls, for example. It is also possible to create a level set tree from a cluster tree of

observations by associating each cluster of observations with the union of the Voronoi cells

of the observations in the cluster. Other constructions can also be applied. In fact, a cluster

of observations can be taken as a point cloud approximating a connected component of a

level set. However, it may be difficult to compute the volume function when the level set

tree is created from Voronoi cells, due to the complexity of the Voronoi cells.

Typically algorithms for the computation of a cluster tree of observations first find those

observations that are estimated to be inside of the level set with level λ. A graph is con-

structed whose vertices (nodes) are these observations, and edges connect the observations.

Then connected components of the graph can be found by traveling the vertices of the graph,

using the depth-first search as in Tarjan (1972). There are several methods to determine the

edges. The simplest method makes an edge between the vertices for observations Xi and Xj

if the distance between Xi and Xj is smaller than some threshold value, or if Xi and Xj are

among each others k-nearest neighbors; see Maier et al. (2009), Kpotufe and von Luxburg

(2011), Kent et al. (2013). A more complicated version places an edge between Xi and Xj if

the amount of probability mass that would be needed to fill the valleys along a line segment

between Xi and Xj is smaller than a user-specified threshold. Methods where the edges are

weighted are called edge iteration methods and methods where the edges are unweighted are

called point iteration methods, using the terminology of Kent et al. (2013).

Stuetzle and Nugent (2010) propose a three step approach for the computation of a clus-

ter tree of observations. First, a density estimate is evaluated at the observations. Second,

a graph G is created whose vertices are the observations, and edges connect the observa-

tions. The weight of an edge is the minimum value of the density estimate along the line

joining the data points. Third, for each level λ a subgraph of G is created. The vertices

of the subgraph are those observations where the density estimate takes a value larger or

equal to λ. A connection exists between two data points when the weight of the edge is

18

larger or equal to λ. Finally, the connected components of all subgraphs are computed.

Chaudhuri and Dasgupta (2010) apply the k-nearest neighbor density estimator, the graph

contains an edge if the Euclidean distance between the two observations is small, and the

weights of the edges are deduced from these Euclidean distances. Rinaldo and Wasserman

(2010) compute first the ρ-nearest neighborhood graph from the observations that are inside

an estimate of the level set. This graph is such that there is an edge between any two nodes if

and only if they both belong to a ball of radius ρ. Menardi and Azzalini (2014) compute the

cluster tree of observations by first looking at the all pairs of observations, making a graph

whose vertices are the observations, and adding an edge between the observations when the

kernel estimate does not have a valley along the segment joining the observations. At each

level a subgraph is formed from the observations inside the kernel estimate of the level set.

(They use the term cluster tree to denote what we call a level set tree.)

The algorithms for the computation of a cluster tree of observations reviewed in the pre-

vious paragraph can be applied for the computation of a level set tree when the observations

are replaced by regions of the sample space. This kind of approach was followed by Ooi

(2002), who uses a histogram estimate. First, a histogram is constructed using a recursive

partitioning. The binary tree associated to the histogram is called a density tree. Second, an

adjacency graph is constructed. Each vertex of the graph corresponds to a terminal region

of the density tree and the vertices for adjacent regions are connected by edges. A weight

of an edge can be taken as the arithmetic mean of the values of the empirical probabilities

of the rectangles. A clustering tree is a binary tree obtained by merging the nodes of the

density tree using the weighting function.

The algorithms described in the previous paragraphs take O(dn2) steps, when the dis-

tances between all pairs of n observations are computed. For example, computation of an

Euclidean distance takes d steps. A k-d-algorithm can diminish the number of steps to

O(dn logn), but then the size of memory is of order nO(d); see Indyk (2004). (The k-d-

algorithm applies a k-d-tree to return the point in X closest to x, when the input is a finite

set X of points in R
d and a query point x.) The algorithm of Stuetzle and Nugent (2010)

seems to require O(Cn,dn
2) steps, where Cn,d can be much larger than d. Indeed, the mini-

mum value of a density estimate on the all line segments joining the observations needs to

19

be found. For example, the evaluation of a kernel density estimate at one point takes O(nd)

steps and the evaluation at many points is needed. After the first proximity graph is com-

puted, the traveling of the graphs and the decomposition of the graphs into the connected

components takes O(n) steps, but this has to be done for each level set separately. Thus,

the previous algorithms seem to be designed for small sample sizes, although the dimension

of the data can be high.

Further Algorithms

Algorithms for the computation of level set trees can be divided to those which compute the

level set tree starting from the roots (roots first algorithms) and to those which compute the

level set tree starting from the leafs (leafs first algorithms).

Klemelä (2006) introduced the Leafsfirst algorithm to compute a level set tree. Leafsfirst

algorithm can be used when the level sets of f : Rd → R for levels λ1 < · · · < λL can be

written as

Λ(f, λl) =

L
⋃

j=l

Aj, (1)

for l = 1, . . . , L, where A1, . . . , AL ⊂ R
d is a collection of sets-. Condition (1) says that there

exists a collection A1, . . . , AL of “elementary sets” or “atoms” which are such that all the

level sets are unions of these atoms. The lowest level set is a union of all atoms and higher

level sets are unions of subcollections of the atoms. For example, condition (1) holds when

f is piecewise constant as

f(x) =

L
∑

i=1

λiIAi
(x).

Unlike the previously described algorithms, Leafsfirst algorithm does not compute a

proximity graph. Instead, the algorithm starts at atom A ∈ {A1, . . . , AL} with the highest

function value. Atom A is the first leaf node. Atom A is merged with the atoms Ai with the

next highest function values if those atoms are connected to the previous atoms. Otherwise,

new leaf nodes are created. The worst case complexity is O(dL2). With bounding boxes it is

possible to avoid making all pairwise comparisons between the atoms (to find which atoms

touch each other), because the comparison is needed only when the next atom is connected to

20

a bounding box of connected atoms which was already found. Thus, running the algorithm

takes in typical cases a smaller number of steps than O(dL2).

Other algorithms are available when function f satisfies further conditions. Let us assume

that f is piecewise constant, and the pieces are constructed using a recursive splitting of the

support. Then f can be represented with a binary tree. A level set of f can be divided into

connected components with a dynamic programming algorithm, which joins the connected

sets by going through the binary tree from the leaves to the root; see Klemelä (2005).

Further Uses

Visualizing Sets

A set A ⊂ R
d can be visualized with the help of a boundary function as in Klemelä (2006).

Let us assume that A is star shaped. Set A is said to be star-shaped when there exist

a center µ ∈ A from which all the remaining points of A are visible, which means that the

segment joining µ and x is included in A for all x ∈ A. The boundary function of a bounded

star-shaped set A from the center µ, is a real function b : Sd−1 → [0,∞), where Sd−1 denotes

the unit sphere on R
d and b(η) is defined as the distance from µ to the closest boundary

point of A.

More formally, set A is star-shaped, when there is a center point µ ∈ R
d and a boundary

function

b : Sd−1 → [0,∞) (2)

so that the A can be written as

A =
{

µ+ rη ∈ R
d : η ∈ Sd−1, 0 ≤ r ≤ b(η)

}

,

where Sd−1 = {x ∈ R
d : ‖x‖ = 1} is the unit sphere.

Now we can study and visualize the boundary function b using level set trees. For

example, level set trees are not very helpful for directly analyzing a unimodal density function

f : Rd → R. However, it can be useful the study the shapes of the level sets of f , or the

shapes of the level sets of the density of the copula of f . The copula means the distribution

function that has been obtained by normalizing the marginals to have a specified fixed

21

distribution function, which is often chosen to be the uniform distribution. Thus, the copula

density can be used to conveniently study the dependence between the components of a

random vector, because the effect of the marginals has been eliminated.

Term level set methods refers sometimes to numerical analysis of surfaces and shapes,

where a closed curve Γ is analyzed by finding a function f such that Γ = {x : f(x) = 0}; see

Sethian (1996) and Osher and Fedkiw (2002).

Optimization of Functions

Let us consider maximization of function f : A → R, where A ⊂ R
d. Creating a level set

tree of f is one way to solve the optimization problem of finding all local maxima of function

f .

A large body of optimization literature considers the case of convex optimization. In

convex optimization function f is convex (for minimization) or concave (for maximization),

and the domain is a convex set. Particular cases of convex optimization are the optimization

of linear or quadratic functions under linear or quadratic constraints. Since convex (concave)

functions do not have many local minima (maxima), the optimization of these functions using

level set tree methods has a limited interest.

A local maximum of a continuous function can be found by iterative algorithms. Many

iterative algorithms are modifications of Newton’s algorithm. In Newton’s algorithm we

choose a starting point x0 ∈ A and define a sequence of vectors by

xn+1 = xn − [Hf(xn)]
−1∇f(xn),

where n ≥ 0, Hf(xn) is the Hessian matrix (d × d matrix of the second partial derivatives)

and∇f(xn) is the gradient (d vector of the first partial derivatives). Sequence {xn} converges

to a point x∗ such that ∇f(x∗) = 0, so that x∗ can be a local maximum, local minimum,

or saddle point. We can find all the local maxima by choosing a large number of different

starting points. Iterative algorithms can be used to find out the collection of local extremes

and the saddle points but they do not give any other information about the shape of the

function; see Nocedal and Wright (1999).

Gorban (2013) has used level set tree methods to study dynamical systems with a strictly

22

convex Lyapunov function f defined on a positively invariant convex polyhedron. Level set

trees can help to find the admissible paths, along which f decreases monotonically, and find

the states that are attainable from the given initial state along the admissible paths.

Functions Whose Domain is a Metric Space

Level set trees can be defined for functions f : M → R, where M is a metric space. The

most applications are for the Euclidean space M = R
d with the Euclidean distance. An

other interesting case is the unit sphere M = Sd−1, where Sd−1 = {x ∈ R
d : ‖x‖ = 1},

accompanied with the geodesic distance (Riemannian distance). Note that we defined in (2)

a boundary function of a star shaped set as a function with the domain Sd−1. Already in

the case d = 3 it is useful to draw a level set tree, because a perspective plot of a function

f : S2 → R is not easy to draw and interpret.

Further Applications

We discuss below the applications of level set trees to flow cytometry data and to Bayesian

data analysis. Further applications of level sets have been found in engineering (anomaly

detection) Desforges et al. (1998), in medical imaging Willett and Nowak (2005), in astron-

omy Jang (2006), and in econometrics (partially identified models when the estimated set is

a subset of the parameter space) Chernozhukov et al. (2007); Bugni (2010).

Flow Cytometry Data

A flow cytometer is a laser instrument, which measures chemical and biophysical character-

istics of cellular particles. The number of analyzed cells may be much larger than 105 in

one sample. Up to 20 measurements are made from a single cell. Cancer diagnostics is one

important use of flow cytometry.

Level set tree methods combined with nonparametric density estimation provide promis-

ing tools for analyzing and clustering flow cytometry data Karttunen et al. (2014); Holmström et al.

(2017). In particular, clustering of cells can indicate the stage of a disease. Clustering has tra-

ditionally been manual, and it has been based on one- and two-dimensional marginal plots of

23

the high-dimensional observations. Sometimes mixture models and k-means clustering have

been applied. Mixture models and k-means clustering lead to convex clusters, whereas clus-

tering with nonparametric density estimation can find nonconvex clusters. Nonparametric

density estimation has been applied to cluster flow cytometry data in Walther et al. (2009),

Naumann et al. (2010), Duong et al. (2008), Duong et al. (2009).

Bayesian Data Analysis

Zhou and Wong (2008) apply level set tree techniques to make Bayesian inference about a

posterior distribution related to DNA sequence segmentation. They generate Monte Carlo

samples from the posterior distribution and use a clustering algorithm to find clusters which

are considered as estimates of level sets. The level sets are not the level sets of the posterior

density f but of h(x) = − log f(x), whose local minima are of interest. They use a bottom-up

partition algorithm, which belongs in our terminology to the leafs first type.

CONCLUSIONS

Level set tree methods have so far found most applications in cluster analysis, but we believe

that they have a large number of potential applications in function visualization, optimiza-

tion, and regression function estimation, for example. Level set tree methods provide tools

for analyzing interactions and dependencies, which involve simultaneously more than one or

two variables of a multivariate function.

FURTHER READING

Fomenko and Kunii (1997) make a link “between the theoretical aspects of modern geom-

etry and topology, on the one hand, and experimental computer geometry, on the other”.

Fomenko and Kunii (1997, Definition 8.1.2) define a Reeb graph of a function f : M → R,

where M is a compact manifold, as the space of connected components of the contours (iso-

surfaces) of the function, and they refer to Reeb (1946) as the origin of the concept. Applica-

tions of Reeb graphs in computer geometry were described by Kunii and Shinagawa (1992).

24

Milnor (1963), Guillemin and Pollack (1974), and Matsumoto (2000) provide a mathematical

discussion of differential topology.

Related research has been done in topological data analysis, where the purpose has often

been to reconstruct topological properties of an object using point cloud data, which means

that the topological properties of the support of a probability distribution are estimated when

a sample of i.i.d. observations is available. Edelsbrunner et al. (2000) introduce a persistence

diagram (barcode) to represent topological information about functions, and Singh et al.

(2007) visualize data by simplicial complexes, where volume information is included as the

largeness of the nodes of the complexes. Carlsson (2009) gives a review of concepts of

topological data analysis.

In the context of scientific visualization Weber et al. (2007) use volume information to

make a 2D configuration of contour trees.

Klemelä (2009) discusses level set trees in Chapter 4, visualization of sets using level set

trees in Chapter 5, visualization of data clouds using level set trees in Chapter 6, visualizing

scales of density estimated using level set trees in Chapter 7, using level set trees in cluster

analysis in Chapter 8.3, and algorithms for computing level set trees in Chapter 13.

References

Aaron, C. and Bodart, O. (2016), ‘Local convex hull support and boundary estimation’, J.

Multivariate Anal. 147, 82–101.

Azzallini, A. and Torelli, N. (2007), ‘Clustering via nonparametric density estimation’, Statis-

tics and Computing 17, 71–80.

Baillo, A. (2003), ‘Total error in a plug-in estimator of level sets’, Stat. Probab. Lett. 65, 411–

417.

Báıllo, A., Cuesta-Albertos, J. A. and Cuevas, A. (2001), ‘Convergence rates in nonpara-

metric estimation of level sets’, Statist. Probab. Lett. 53, 27–35.

Báıllo, A., Cuevas, A. and Justel, A. (2000), ‘Set estimation and nonparametric detection’,

Canadian J. Statist. 28, 765–782.

25

Biau, G., Cadre, B. and Pelletier, B. (2007), ‘A graph-based estimator of the number of

clusters’, ESAIM Probab. Stat. 11, 272–280.

Bugni, F. (2010), ‘Bootstrap inference in partially identified models defined by moment

inequalities: Coverage of the identified set’, Econometrica 76, 735–753.

Burman, P. and Polonik, W. (2009), ‘Multivariate mode hunting: Data analytic tools with

measures of significance.’, J. Multivariate Anal. 100, 1198–1218.

Cadre, B. (2006), ‘Kernel estimation of density level sets’, J. Multivariate Anal. 97(4), 999–

1023.

Carlsson, G. (2009), ‘Topology and data’, Bulletin Am. Math. Soc. 46(2), 255–308.

Carr, H., Snoeyink, J. and Axen, U. (2003), ‘Computing contour trees in any dimension’,

Comput. Geometry: Theory Appl. 24(2), 75–94.

Chacón, J. E. (2015), ‘A population background for nonparametric density-based clustering’,

Statist. Sci. 30(4), 518–532.

Chaudhuri, K. and Dasgupta, S. (2010), Rates of convergence for the cluster tree, in J. D.

Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel and A. Culotta, eds, ‘Advances in

Neural Information Processing Systems 23’, Curran Associates, Vancouver, BC, pp. 343–

351.

Chernozhukov, V., Hong, H. and Tamer, E. (2007), ‘Estimation and confidence regions for

parameter sets in econometric models’, Econometrica 75, 1243–1284.

Cuevas, A., Febreiro, M. and Fraiman, R. (2000), ‘Estimating the number of clusters’, Canad.

J. Statist. 28, 367–382.

Cuevas, A., Febreiro, M. and Fraiman, R. (2001), ‘Cluster analysis: A further approach

based on density estimation’, Comput. Stat. Data Anal. 36, 441–459.

Cuevas, A., González-Manteiga, W. and Rodriguez-Casal, A. (2006), ‘Plug-in estimation of

general level sets’, Aust. N. Z. J. Stat. 48, 7–19.

26

Cuevas, A. and Rodriguez-Casal, A. (2004), ‘On boundary estimation’, Adv. Appl. Probab.

36(2), 340–354.

Desforges, M. J., Jacob, P. J. and Cooper, J. E. (1998), ‘Application of probability den-

sity estimation to the detection of abnormal conditions in engineering’, Proc. Institute

Mechanical Engineering 212, 687–703.

Devroye, L. and Wise, G. L. (1980), ‘Detection of abnormal behavior via nonparametric

estimation of the support’, SIAM J. Appl. Math. 38, 480–488.

Duong, T., Cowling, A., Koch, I. and Wand, M. P. (2008), ‘Feature significance for multi-

variate kernel density estimation’, Comput. Statist. Data Anal. 52(9), 4225–4242.

Duong, T., Koch, I. and Wand, M. P. (2009), ‘Highest density difference region estimation

with application to flow cytometry data’, Biometrical Journal 51, 504–521.

Edelsbrunner, H., Letscher, D. and Zomorodian, A. (2000), Topological persistence and

simplification, in ‘Proc. 41st Ann. IEEE Sympos. Found Comput. Sci.’, IEEE Computer

Society, Washington, DC, pp. 454–463.

Fomenko, A. T. and Kunii, T. L., eds (1997), Topological Modeling for Visualization,

Springer, Berlin.

Fraley, C. and Raftery, A. E. (2002), ‘Model-based clustering, discriminant analysis and

density estimation’, J. Am. Statist. Assoc. 97, 611–631.

Gorban, A. N. (2013), ‘Thermodynamic tree: The space of admissible paths’, Siam J. Applied

Dynamical Systems 12(1), 246–278.

Guillemin, V. and Pollack, A. (1974), Differential Topology, Prentice-Hall, Englewood Cliffs,

NJ.

Hartigan, J. A. (1975), Clustering Algorithms, Wiley, New York.

Hartigan, J. A. (1987), ‘Estimation of a convex density cluster in two dimensions’, J. Am.

Statist. Assoc. 82, 267–270.

27

Holmström, L., Karttunen, K. and Klemelä, J. (2017), ‘Estimation of level set trees using

adaptive partitions’, Comput. Statist. 32, 1139–1163.

Indyk, P. (2004), Nearest neighbors in high-dimensional spaces, in J. E. Goodman and

J. O’Rourke, eds, ‘Handbook of Discrete and Computational Geometry’, Chapman &

Hall/CRC, Boca Raton, FL, pp. 877–892.

Jang, W. (2006), ‘Nonparametric density estimation and clustering in astronomical sky sur-

vey’, Comp. Statist. Data Anal. 50, 760–774.

Karttunen, K., Holmström, L. and Klemelä, J. (2014), Level set trees with enhanced marginal

density visualization: Application to flow cytometry, in ‘Proceedings 5th International

Conference on Information Visualization Theory and Applications’, pp. 210–217.

Kent, B. P., Rinaldo, A. and Timothy, V. (2013), DeBaCl: A Python package for interactive

DEnsity-BAsed CLustering, Technical report. arXiv:1307.8136.

Klemelä, J. (2004a), ‘Complexity penalized support estimation’, J. Multivariate Anal.

88, 274–297.

Klemelä, J. (2004b), ‘Visualization of multivariate density estimates with level set trees’, J.

Comput. Graph. Statist. 13(3), 599–620.

Klemelä, J. (2005), ‘Algorithms for the manipulation of level sets of nonparametric density

estimates’, Comput. Statist. 20, 349–368.

Klemelä, J. (2006), ‘Visualization of multivariate density estimates with shape trees’, J.

Comput. Graph. Statist. 15(2), 372–397.

Klemelä, J. (2009), Smoothing of Multivariate Data: Density Estimation and Visualization,

Wiley, New York.

Korostelev, A. P. and Tsybakov, A. B. (1993), Minimax Theory of Image Reconstruction,

Vol. 82 of Lecture Notes in Statistics, Springer, Berlin.

Kpotufe, S. and von Luxburg, U. (2011), Pruning nearest neighbor cluster trees, in ‘Proceed-

ings of the 28th International Conference on Machine Learning’, Vol. 105, pp. 225–232.

28

Kriegel, H.-P., Kröger, P., Sander, J. and Zimek, A. (2011), ‘Density-based clustering’, Wires

Data Mining Knowledge Discovery 1, 231–240.

Kunii, T. L. and Shinagawa, Y., eds (1992), Modern Geometric Computing for Visualization,

Springer, Berlin.

Maier, M., Hein, M. and von Luxburg, U. (2009), ‘Optimal construction of k-nearest-neighbor

graphs for identifying noisy clusters’, Theoretical Computer Science 410(19), 1749–1764.

Mammen, E. and Polonik, W. (2013), ‘Confidence regions for level sets’, J. Multivariate

Anal. 122, 202–214.

Mammen, E. and Tsybakov, A. B. (1995), ‘Asymptotical minimax recovery of sets with

smooth boundaries’, Ann. Statist. 23, 502–524.

Mason, D. and Polonik, W. (2009), ‘Asymptotic normality of plug-in level set estimates’,

Ann. Appl. Probab. 19, 1108–1142.

Matsumoto, Y. (2000), An Introduction to Morse Theory, Vol. 208 of Translations of Math-

ematical Monographs, AMS, Providence, RI. Originally published 1997 in Japanese.

McMullen, P. (1970), ‘The maximum numbers of faces of a convex polytope’, Mathematika

17, 179–184.

Menardi, G. and Azzalini, A. (2014), ‘An advacement in clustering via nonparametric density

estimation’, Stat. Comput. 24, 753–767.

Milnor, J. (1963), Morse Theory, Princeton University Press, Princeton, NJ.

Müller, D. W. and Sawitzki, G. (1991), ‘Excess mass estimates and tests of multimodality’,

J. Am. Statist. Assoc. 86, 738–746.

Naumann, U., Luta, G. and Wand, M. P. (2010), ‘The curvHDR method for gating flow

cytometry samples’, BMC Bioinformatics 11(44).

Nocedal, J. and Wright, S. J. (1999), Numerical Optimization, Springer, Berlin.

29

Nolan, D. (1991), ‘The excess-mass ellipsoid’, J. Multivariate Anal. 39, 348–371.

Ooi, H. (2002), ‘Density visualization and mode hunting using trees’, J. Comput. Graph.

Statist. 11, 328–347.

Osher, S. J. and Fedkiw, R. P. (2002), Level Set Methods and Dynamic Implicit Surfaces,

Springer, Berlin.

Polonik, W. (1995), ‘Measuring mass concentration and estimating density contour clusters

- an excess mass approach’, Ann. Statist. 23, 855–881.

Reeb, G. (1946), ‘Sur les points singuliers d’une forme de pfaff completement integrable ou

d’une fonction numerique’, Comptes Rend. Acad. Sci. Paris 222, 847–849.

Rigollet, P. and Vert, R. (2009), ‘Optimal rates for plug-in estimators of density level sets’,

Bernoulli 15, 1154–1178.

Rinaldo, A. and Wasserman, L. (2010), ‘Generalized density clustering’, Ann. Statist.

38, 2678–2722.

Sethian, J. A. (1996), Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics,

Computer Vision, and Materials Science, Cambridge University Press, Cambridge, UK.

Singh, A., Scott, C. and Nowak, R. (2009), ‘Adaptive Hausdorff estimation of density level

sets’, Ann. Statist. 37, 2760–2782.

Singh, G., Memoli, F. and Carlsson, G. (2007), Topological methods for the analysis of high

dimensional data sets and 3D object recognition, in M. Botsch, R. Pajarola, B. Chen

and M. Zwicker, eds, ‘Symp. Point Based Graphics’, Eurographics Association, Prague,

pp. 91–100.

Steinwart, I. (2015), ‘Fully adaptive density-based clustering’, Ann. Statist. 43, 2132–2167.

Stuetzle, W. (2003), ‘Estimating the cluster tree of a density by analyzing the minimal

spanning tree of a sample’, J. Classification 20(5), 25–47.

30

Stuetzle, W. and Nugent, R. (2010), ‘A generalized single linkage method for estimating the

cluster tree of a density’, J. Comput. Graph. Statist. 19, 397–418.

Tarjan, R. E. (1972), ‘Depth-first search and linear graph algorithms’, SIAM J. Computing

1(2), 146–160.

Tarjan, R. E. (1976), ‘Efficiency of a good but not linear set union algorithm’, J. ACM

22, 215–225.

Tsybakov, A. B. (1997), ‘On nonparametric estimation of density level sets’, Ann. Statist.

25, 948–969.

Walther, G. (1997), ‘Granulometric smoothing’, Ann. Statist. 25, 2273–2299.

Walther, G., Zimmerman, N., Moore, W., Parks, D., Meehan, S., Belitskaya, I., Pan, J. and

Herzenberg, L. (2009), ‘Automatic clustering of flow cytometry data with density-based

merging’, Advances in Bioinformatics 2009, 686–759.

Weber, G., Bremer, P.-T. and Pascucci, V. (2007), ‘Topological landscapes: A terrain

metaphor for scientific data’, IEEE Trans. Visualization Computer Graphics 13(6), 1416–

1423.

Willett, R. M. and Nowak, R. D. (2005), ‘Level set estimation in medical imaging’, Proc.

IEEE Statistical Signal Processing 5, 1089–1092.

Wishart, D. (1969), Mode analysis: A generalization of nearest neighbor which reduces

chaining effects, in A. J. Cole, ed., ‘Numerical Taxonomy’, Academic Press, New York,

pp. 282–311.

Zhou, Q. and Wong, W. H. (2008), ‘Bayesian inference of DNA sequence segmentation’,

Ann. Appl. Statist. 2(4), 1307–1331.

Zomorodian, A. (2012), Topological data analysis, in A. Zomorodian, ed., ‘Advances in Ap-

plied and Computational Topology’, Vol. 70, American Mathematical Society, Providence,

pp. 1–40.

31

