
Introduction

We will analyze data that are given as ann× d matrix of real numbers. The number
in theith row and in thejth column is the measurement of thejth property of theith
object. For example, the objects might be companies and the properties might be the
stock price, debt, number of employees, earnings, or the objects might be persons
and the measurements might be height, weight, age.

I.1 SMOOTHING

A fundamental idea is tosmooth the data. Smoothing means that we interpret the
data asn realizations ofd-dimensional identically distributed random vectors and
estimate the density function of the observations. A density function is a function
R

d
→ R that describes the distribution of the probability mass in thed-dimensional

Euclidean space.
The invention of the Cartesian coordinate system made it possible to visualize

two-dimensional data with scatter plots. One may interpretthen × d data matrix as
n points in thed-dimensional Euclidean space, and whend = 2 to plot the points in
the Cartesian coordinate system. Scatter plots may be used,for example, to find the
regions where most of the observations are concentrated. Finding regions where the
observations are concentrated translates into the problemof finding regions where the
density function takes large values, since a density function is a function that describes
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Figure I.1 Shown are (a) a scatter plot and (b) a kernel estimate of data of sizen = 3000.

the denseness of the observations in the regions of the sample space. Figure I.1(a)
shows a scatter plot of data of sizen = 3000, and panel (b) shows a perspective
plot of a kernel estimate. The figure illustrates the fact that the scatter plot makes it
possible to identify individual points but the perspectiveplot of the density estimate
visualizes the overall denseness of the observations.

I.2 VISUALIZATION

FunctionsRd → R are much more complex objects thann× d data matrices. Thus
it would seem that smoothing multivariate data is not usefulin visualization. Is it
possible to extend the success story of smoothing from the casesd = 1 andd = 2 to
the casesd ≥ 3? In our opinion only the very first steps have been made in finding
visualization tools for multivariate functions, sets, anddata.

The usual graphs seem simple to us, but the idea did not occur to the Greeks or
Romans, or to Newton and Leibniz. Lambert (1779) used bivariate function graphs to
analyze physical data, and Playfair (1786, 1801) invented the histogram, the pie chart,
and the line graph. Still the progress in using these graphs in scientific reporting was
slow, and even the scientifically trained readers had to learn how to cope with the new
methods. (Spence and Lewandowsky 1990, pp. 13-14). Visualization makes the
data visible, and seeing is one of the basic ways for humans toperceive reality. This
does not mean that visualization is trivial and that new tools cannot be developed.

Humans can see only one-, two-, or three-dimensional objects. Thus visualiza-
tion of multidimensional objects is possible only by transforming multidimensional
objects to one, two, or three-dimensional objects. Furthermore science is com-
municated through paper and the computer screen, and this puts emphasis on the
two-dimensional case. How to transform multidimensional objects to one, two, or
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Figure I.2 Shown are (a) a perspective plot, (b) volume plot, and (c–d) barycenter plots of
a three-modal density.

three-dimensional objects? A useful method is to apply projections and slices, but
there are other possibilities.

Figure I.2, Figure I.3, and Figure I.4, show visualizationsof objects of three
different types: a function, a set, and data. These three objects have something in
common: they are all three-modal objects. The visualizations in the figures reveal the
modality of the objects by way of shape isomorphic transforms. These visualizations
are one of the main subjects of the book.

In topology one says that two sets are topologically equivalent if they are dif-
feomorphic or homeomorphic. For example, a donut and a coffee cup may be said
to be topologically equivalent. The definition of topological equivalence in terms
of diffeomorphisms or homeomorphisms applies to objects ofsame dimension, but
we are interested in the similarity of objects of different dimensions; a multivariate
function may be visualized by a one- or two-dimensional function if these functions
are similar in some sense.

“Visual geometry is like an experienced doctor’s savvy in reading a patient’s
complexion, charts, and X-rays. Precise analysis is like the medical test results–the
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Figure I.3 Shown are (a) a standard plot, (b) radius plot, and (c–d) location plots of a level
set of a density with Clayton copula, and Student marginals.



VISUALIZATION xxv

−5 0 5

−
5

0
5

coordinate 1

co
or

di
na

te
 2

M3

M2

M1

(a)

0 200 400 600 800

0
2

4
6

8
10

M1
M2

M3

(b)

−5 0 5

0
2

4
6

8
10

coordinate 1

M1
M2

M3

(c)

−6 −2 0 2 4 6 8

0
2

4
6

8
10

coordinate 2

M1
M2

M3

(d)

Figure I.4 Shown are (a) a scatter plot, (b) tail frequency plot, and (c–d) tail tree plots of a
sample of size 1000 from a density with Clayton copula and Student marginals.
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raw numbers of blood pressure and chemistry.” (Mandelbrot and Hudson 2004,
the prelude). Visualization cannot replace probabilisticinference, but probabilistic
inference cannot alone be sufficient for scientific inference, without the support of
visualization. Sometimes graphical methods are the only tool we need. For example,
when the sample size is very large, we do not need to worry about the random
fluctuation part of the experiment.

At least three categories of research on visualization havebeen classified: sta-
tistical visualization or data visualization, scientific visualization, and information
visualization. Data visualization studies the direct visualization of data matrices,
including the visualization of categorical data. Scientific visualization has concen-
trated on the visualization of 3D objects, functions, and processes, addressing the
issues of industrial design and the medical, chemical, and meteorological visualiza-
tion. Information visualization has addressed the visualization of various kinds of
abstract data structures, like networks and text corpuses.Our main emphasis is on the
visualization of multivariate functions. The research on the visualization of functions
can be seen as a part of the discipline of information visualization. Our basic setting
is to analyze statistical data and thus our research could also be seen as belonging to
statistical visualization.

I.3 DENSITY ESTIMATION

Multivariate density estimation is difficult. Parametric Gaussian models fail because
they have2d + d(d − 1)/2 parameters (d parameters for the mean,d parameters
for the diagonal of the covariance matrix, andd(d − 1)/2 parameters for the off-
diagonals of the symmetric covariance matrix). Nonparametric estimators that use
local averaging fail because local neighborhoods are almost empty of observations in
high-dimensional Euclidean spaces. Although some classical methods fail, this does
not mean that some other methods could not work. There existsa rich and growing
population of density estimators that add to the toolbox of fully parametric and fully
nonparametric methods.

The additions to the toolbox could include structured nonparametric methods that
utilize structural restrictions in the underlying function. Consider, for example, es-
timating a multivariate density with a product density, or estimating a regression
function with an additive function. Consider imposing shape restrictions like uni-
modality or imposing structural restrictions on the level sets of the density. Recent
additions to the toolbox of density estimators include the estimators based on semi-
parametric models and mixture models. Infinite mixture models are convex hulls of
a base class of densities. This leads to the use of ensemble methods, like bootstrap
aggregation, boosting, and stagewise minimization estimators.

Density estimation is a high-precision tool for statistical inference. It can give de-
tailed knowledge about the distribution. Functions definedin moderate-dimensional
Euclidean spaces, say four- or five-dimensional spaces, canbe extremely complex,
and it can be almost impossible to detect all features of a joint distribution of four
random variables. Sometimes the data contain hundreds of variables, and there is
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no hope to reach detailed knowledge about the full joint distribution with a finite
amount of measurements. In this case it may be useful to applydimension reduction
techniques before continuing the analysis. Just like a sculptor starts with a hammer
and a chisel to create the first contours of the sculpture, andthen proceeds with high
precision instruments to create the final details, a scientist could start with dimen-
sion reduction techniques and then proceed with density estimation. Statistics needs
different kinds of tools to be used for different purposes. The right tools are chosen
taking into account the available material and taking into account the aims of the
work.

I.4 PLAN OF THE BOOK

Part I of the book covers visualization of multivariate functions, sets, data, and
scales of multivariate density estimates. Part II gives basic mathematical tools to
analyze asymptotically the behavior of multivariate density estimators and describes
algorithms that are needed in visualization and in estimation of multivariate densities.
Part III presents a toolbox of multivariate density estimators.

I.5 WEB PAGE AND THE CODE

Our hope is that the book satisfies the requirements of reproducible research. We
provide software packages to reproduce the main figures and experiments of the
book. The R-packages “denpro”and “delt” may be downloaded from the Web page
http://www.denstruct.net or from the Web page http://r-project.org. The Web page of
the book contains instructions for applying the packages. The Web page of the book
contains also the colored figures of the book and the code for reproducing the figures.

I.6 BIBLIOGRAPHIC NOTES

The classic introductions to multivariate density estimation are those by Tapia and
Thompson (1978), who discuss penalized likelihood densityestimation, Silverman
(1986), who considers applications of kernel density estimation, and Scott (1992),
who addresses issues of visualization. Kernel estimation is studied in Wand and
Jones (1995). A mathematical exposition with theL1 view is given by Devroye and
Györfi (1985) and Devroye (1987). An applied view is given by Simonoff (1996).
Efromovich (1999) covers curve estimation with an emphasison series methods.
Tsybakov (2004) covers asymptotic minimax theory of density estimation.

A semiological study of graphics is given by Bertin (1967, 1981). Tukey (1977)
gives a foundation for exploratory data analysis. Visualization of information is
considered in Tufte (1983, 1990, 1997). Cleveland (1993b, 1994) considers principles
of graph construction and strategies for data analysis, treating curve fitting as a
visualization tool. The topological concepts of scientificvisualization are presented
in Fomenko and Kunii (1997). Information visualization, asvisualization of graphs,
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trees, knowledge domains, and virtual environments, is discussed in Chen (2004).
Spence (2001) treats general information visualization and includes also classical
statistical visualization from an information visualization viewpoint.


