Introduction

We will analyze data that are given assarx d matrix of real numbers. The number
in theith row and in thejth column is the measurement of tjth property of theth
object. For example, the objects might be companies andrtpegies might be the
stock price, debt, number of employees, earnings, or thectbmight be persons
and the measurements might be height, weight, age.

.1 SMOOTHING

A fundamental idea is temooth the data. Smoothing means that we interpret the
data asn realizations ofd-dimensional identically distributed random vectors and
estimate the density function of the observations. A dgrfsitction is a function
R? — R that describes the distribution of the probability mas$iextdimensional
Euclidean space.

The invention of the Cartesian coordinate system made #iplesto visualize
two-dimensional data with scatter plots. One may interfiret, x d data matrix as
n points in thed-dimensional Euclidean space, and wlies 2 to plot the points in
the Cartesian coordinate system. Scatter plots may be fmgezkample, to find the
regions where most of the observations are concentratadirfg regions where the
observations are concentrated translates into the praifiéntding regions where the
density functiontakes large values, since a density fonésia function that describes
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Figurel.1 Shown are (a) a scatter plot and (b) a kernel estimate of daiaex = 3000.

the denseness of the observations in the regions of the sasppte. Figure |.1(a)
shows a scatter plot of data of sire= 3000, and panel (b) shows a perspective
plot of a kernel estimate. The figure illustrates the fact tha scatter plot makes it
possible to identify individual points but the perspeciet of the density estimate
visualizes the overall denseness of the observations.

1.2 VISUALIZATION

FunctionsR? — R are much more complex objects tharx d data matrices. Thus
it would seem that smoothing multivariate data is not usefwlisualization. Is it
possible to extend the success story of smoothing from thesda= 1 andd = 2 to
the caseg > 3? In our opinion only the very first steps have been made inrfindi
visualization tools for multivariate functions, sets, atada.

The usual graphs seem simple to us, but the idea did not ca¢bhetGreeks or
Romans, or to Newton and Leibniz. Lambert (1779) used at@function graphs to
analyze physical data, and Playfair (1786, 1801) invetitettiistogram, the pie chart,
and the line graph. Still the progress in using these grapssiéntific reporting was
slow, and even the scientifically trained readers had tmlkeaw to cope with the new
methods. (Spence and Lewandowsky 1990, pp. 13-14). Viatah makes the
data visible, and seeing is one of the basic ways for humaperteive reality. This
does not mean that visualization is trivial and that newd@alnnot be developed.

Humans can see only one-, two-, or three-dimensional abjetius visualiza-
tion of multidimensional objects is possible only by trawsfiing multidimensional
objects to one, two, or three-dimensional objects. Furntioee science is com-
municated through paper and the computer screen, and ttisemphasis on the
two-dimensional case. How to transform multidimensiorgkots to one, two, or
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Figurel.2 Shown are (a) a perspective plot, (b) volume plot, and (cadydenter plots of
a three-modal density.

three-dimensional objects? A useful method is to applygmtigns and slices, but
there are other possibilities.

Figure 1.2, Figure 1.3, and Figure 1.4, show visualizatiarfsobjects of three
different types: a function, a set, and data. These threecttbhave something in
common: they are all three-modal objects. The visualipatio the figures reveal the
modality of the objects by way of shape isomorphic trans®rithese visualizations
are one of the main subjects of the book.

In topology one says that two sets are topologically egaivaif they are dif-
feomorphic or homeomorphic. For example, a donut and a eaffipp may be said
to be topologically equivalent. The definition of topolagjiequivalence in terms
of diffeomorphisms or homeomorphisms applies to objectsaniie dimension, but
we are interested in the similarity of objects of differemhdnsions; a multivariate
function may be visualized by a one- or two-dimensional figrcif these functions
are similar in some sense.

“Visual geometry is like an experienced doctor's savvy iadi@g a patient’s
complexion, charts, and X-rays. Precise analysis is likentledical test results—the
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Figurel.3 Shown are (a) a standard plot, (b) radius plot, and (c—d}ilmealots of a level
set of a density with Clayton copula, and Student marginals.
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Figurel.4 Shown are (a) a scatter plot, (b) tail frequency plot, and)¢ail tree plots of a
sample of size 1000 from a density with Clayton copula andi@ttimarginals.
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raw numbers of blood pressure and chemistry.” (Mandelbnot ldudson 2004,
the prelude). Visualization cannot replace probabilistference, but probabilistic
inference cannot alone be sufficient for scientific infeegngithout the support of
visualization. Sometimes graphical methods are the oolyte need. For example,
when the sample size is very large, we do not need to worry tatheurandom

fluctuation part of the experiment.

At least three categories of research on visualization lhaen classified: sta-
tistical visualization or data visualization, scientifiswalization, and information
visualization. Data visualization studies the direct wiation of data matrices,
including the visualization of categorical data. Scieatifisualization has concen-
trated on the visualization of 3D objects, functions, andcpsses, addressing the
issues of industrial design and the medical, chemical, agigonological visualiza-
tion. Information visualization has addressed the vigadilbn of various kinds of
abstract data structures, like networks and text corp@desmain emphasis is on the
visualization of multivariate functions. The researchlomvisualization of functions
can be seen as a part of the discipline of information vigatithn. Our basic setting
is to analyze statistical data and thus our research cosiides seen as belonging to
statistical visualization.

1.3 DENSITY ESTIMATION

Multivariate density estimation is difficult. Parametria@sian models fail because
they have2d + d(d — 1)/2 parametersd parameters for the mead,parameters
for the diagonal of the covariance matrix, a#@ — 1)/2 parameters for the off-
diagonals of the symmetric covariance matrix). Nonparaimestimators that use
local averaging fail because local neighborhoods are dleropty of observations in
high-dimensional Euclidean spaces. Although some clalssiethods fail, this does
not mean that some other methods could not work. There existh and growing
population of density estimators that add to the toolboxud§fparametric and fully
nonparametric methods.

The additions to the toolbox could include structured noapeetric methods that
utilize structural restrictions in the underlying funetioConsider, for example, es-
timating a multivariate density with a product density, stimating a regression
function with an additive function. Consider imposing saapstrictions like uni-
modality or imposing structural restrictions on the levetissof the density. Recent
additions to the toolbox of density estimators include tsiéngators based on semi-
parametric models and mixture models. Infinite mixture ni®dee convex hulls of
a base class of densities. This leads to the use of ensemtiedseglike bootstrap
aggregation, boosting, and stagewise minimization estima

Density estimation is a high-precision tool for statistioderence. It can give de-
tailed knowledge about the distribution. Functions defiimethoderate-dimensional
Euclidean spaces, say four- or five-dimensional spacesheaxtremely complex,
and it can be almost impossible to detect all features ofra ghistribution of four
random variables. Sometimes the data contain hundredsiables, and there is
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no hope to reach detailed knowledge about the full jointrifigtion with a finite
amount of measurements. In this case it may be useful to aplsnsion reduction
techniques before continuing the analysis. Just like gpsoustarts with a hammer
and a chisel to create the first contours of the sculpturettardproceeds with high
precision instruments to create the final details, a s@keotuld start with dimen-
sion reduction techniques and then proceed with densitpagon. Statistics needs
different kinds of tools to be used for different purposeke Tight tools are chosen
taking into account the available material and taking intooant the aims of the
work.

.4 PLAN OF THE BOOK

Part | of the book covers visualization of multivariate ftions, sets, data, and
scales of multivariate density estimates. Part Il giveschamthematical tools to
analyze asymptotically the behavior of multivariate dgnsstimators and describes
algorithms that are needed in visualization and in estonaif multivariate densities.
Part Il presents a toolbox of multivariate density estionat

.5 WEB PAGE AND THE CODE

Our hope is that the book satisfies the requirements of rejible research. We
provide software packages to reproduce the main figures gperienents of the

book. The R-packages “denpro”and “delt” may be downloadenhfthe Web page
http://www.denstruct.net or from the Web page http:/frjpct.org. The Web page of
the book contains instructions for applying the packagé& Web page of the book
contains also the colored figures of the book and the codefwoducing the figures.

1.6 BIBLIOGRAPHIC NOTES

The classic introductions to multivariate density estioratare those by Tapia and
Thompson (1978), who discuss penalized likelihood derestimation, Silverman
(1986), who considers applications of kernel density eatiiom, and Scott (1992),
who addresses issues of visualization. Kernel estimatiostudied in Wand and
Jones (1995). A mathematical exposition with fheview is given by Devroye and
Gyorfi (1985) and Devroye (1987). An applied view is given by 8imaff (1996).
Efromovich (1999) covers curve estimation with an emphasiseries methods.
Tsybakov (2004) covers asymptotic minimax theory of dgrestimation.

A semiological study of graphics is given by Bertin (1967818 Tukey (1977)
gives a foundation for exploratory data analysis. Viswlon of information is
considered in Tufte (1983, 1990, 1997). Cleveland (1929894) considers principles
of graph construction and strategies for data analysisfitrg curve fitting as a
visualization tool. The topological concepts of scientisualization are presented
in Fomenko and Kunii (1997). Information visualization vdsualization of graphs,
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trees, knowledge domains, and virtual environments, isudised in Chen (2004).
Spence (2001) treats general information visualizatioh iacludes also classical
statistical visualization from an information visualizat viewpoint.



