
Visualization of Multivariate Density Estimateswith Level Set TreesJussi Klemelä ∗Abstra
tWe present a method for visualization of multivariate fun
tions. Themethod is based on a tree stru
ture, built from separated parts of levelsets of a fun
tion, whi
h we 
all level set tree. The method is applied forvisualization of estimates of multivarate density fun
tions. With di�erentgraphi
al representations of level set trees we may visualize the numberand lo
ation of modes, ex
ess masses asso
iated with the modes, and 
er-tain shape 
hara
teristi
s of the estimate. We present simulation exampleswhere proje
ting data to two dimension does not help to reveal the modesof the density, but with the help of level set trees one may dete
t the modes.We argue that level set trees provide a useful method for exploratory dataanalysis.Keywords: Cluster analysis; Exploratory data analysis; Mixtures; Mode dete
-tion; Multivariate data.1 Introdu
tionNonparametri
 density estimators have been su

esfully applied in exploratorydata analysis for one and two dimensional data. For example, it is possible todete
t modes by the inspe
tion of one and two dimensional density estimates.For more than two dimensional data the di�
ulties with visualizing density esti-mates have often hindered the appli
ation of nonparametri
 density estimation.We 
onstru
t a method for visualization of multivariate fun
tions whi
h 
an in-
rease usefulness of multivariate density estimates in exploration and mining ofmultivariate data.We present a method of visualization whi
h is based on the level sets of thefun
tion. A level set is the set of those points at whi
h the fun
tion ex
eeds agiven value; level set of fun
tion f : Rd → R at level α is de�ned as
Λα =

{

x ∈ R
d : f(x) ≥ α

}

. (1)
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We assume that the fun
tion to be visualized has only a �nite number of di�erentlevel sets, in other words, it is pie
ewise 
onstant. If the fun
tion is not pie
ewise
onstant, then we will approximate it with su
h a fun
tion, as will be done forkernel estimates with a 
ontinuous kernel.A level set tree is a tree stru
ture formed by taking as root nodes the separatedregions of the lowest level set of the fun
tion. The 
hild nodes of a given node
orrespond to the separated regions of a part of the level set whose level is onestep higher than the level of this parent node. Thus the disjoint regions of a levelset will be startpoints for the di�erent bran
hes of the tree.In density estimation we are interested in the shape of the density fun
tion:the number and lo
ation of modes, relative size of the modes, skewness, kurtosis,tail behaviour of the fun
tion, and so on. The level set tree will re�e
t the modestru
ture of the fun
tion, be
ause di�erent bran
hes of the tree will 
orrespond todistin
t modes (lo
al extremes) of the fun
tion. By 
omparing level sets relatedto di�erent levels one 
an �nd information on the shape of the density, also in highdimensional spa
es. In parti
ular, we may look how the volumes and bary
entersof level sets are 
hanging as a fun
tion of the level.We present the volume plot and the bary
enter plot for visualization of densityfun
tions. The volume plot visualizes the number and relative size of the modes ofthe density, and gives information on the kurtosis. With a mode we mean a lo
alextreme of the density and with size of a mode we mean the probability massasso
iated with this lo
al extreme, that is, the ex
ess mass of the lo
al extreme.The bary
enter plot draws the �skeleton� of the fun
tion, visualizing lo
ations ofthe modes and giving information on the skewness.We 
laim that even in 
ases where proje
tions may reveal the modes of theunderlying density, level set trees provide an easy to use exploratory methodwhi
h gives additional insight into the shape of the density. Furthermore, thereexist examples where one or two dimensional marginal densities do not reveal thetrue number of modes of the density. We show this by 
onstru
ting examplesof mixtures of Gaussian densities, where the 
omponents of the mixture are so
lose to ea
h other that all marginal densities show only few modes. For theseexamples level set trees however provide a method for �nding the number andlo
ations of the modes.Level set trees provide a method for visualizing density estimates. Methodsfor making inferen
e whether lo
al maxima of a density estimate 
orrespond tothe modes of the underlying density has to be studied elsewhere. For visualiza-tion and inferen
e 
on
erning the mode stru
ture of one and two dimensionaldensities, see for example Minnotte and S
ott (1993), Mar
hette and Wegman(1997), Minnotte, Mar
hette and Wegman (1998), Chaudhuri and Marron (1999),Godtliebsen, Marron and Chaudhuri (2002). Various mode testing pro
eduresare presented in Silverman (1981), Hartigan and Hartigan (1985), Müller andSawitzki (1991), Hartigan and Mohanty (1992), Mammen, Marron and Fisher(1992), Fisher, Mammen and Marron (1994), Minnotte (1997), and Davies and2



Kova
 (2001). Sin
e volume plots visualize ex
ess masses asso
iated with thelo
al extremes of the density, they help to make a judgement whether the lo
alextremes of an estimate 
orrespond to the true modes of the underlying den-sity fun
tion. Ex
ess masses in mode dete
tion has been applied for example byMüller and Sawitzki (1991).In Se
tion 2.1 we de�ne level set trees for general multivariate fun
tions.In Se
tions 2.2 and 2.3 we de�ne volume plot and bary
enter plot and dis
ussbasi
 diagnosti
s with the help of these plots. In Se
tion 2.4 we dis
uss the
omputational 
omplexity of 
al
ulating a level set tree. In Se
tion 3 we illustratethe level set trees used for visualizing histograms and kernel estimates. In Se
tion4 we give examples of the estimation of multimodal densities. Examples are 3and 4 dimensional mixtures of standard Gaussian densities. Se
tion 5 
ontains asummary and dis
usses further work.Computations and graphi
s in this arti
le have been made with an R-pa
kage
alled "denpro". This pa
kage may be downloaded from http://denstru
t.net.2 De�nition of level set trees and level set plotsWe will de�ne the level set tree, de�ne the volume plot and the bary
enter plot,dis
uss basi
 diagnosti
s whi
h 
an be made using these plots, and �nally dis
ussthe 
omputational 
omplexity of 
al
ulating the level set trees in some typi
alexamples.2.1 De�nition of the level set treeThe fun
tion from whi
h we form the level set tree is assumed to be pie
ewise
onstant. Thus the fun
tion has a �nite number of distin
t level sets. The levelset tree is a tree whose nodes represent separated subsets of the level sets ofthe fun
tion. It is possible to de�ne a 
orresponding stru
ture for 
ontinuousfun
tions but we 
onsider only the dis
rete 
ase be
ause this 
ase is relevant forthe pra
ti
al 
al
ulation of level set trees.We say that the sets A, B ⊂ R
d are separated if inf{‖x−y‖ : x ∈ A, y ∈ B} >

0 where ‖ · ‖ denotes Eu
lidean distan
e. Thus, two sets are said to be separatedif there is some spa
e between them. We say that set A ⊂ R
d is 
onne
ted if forea
h nonempty B, C ⊂ R

d su
h that A = B∪C, sets B and C are not separated.Thus, a set is said to be 
onne
ted if it 
annot be written as a union of twoseparated sets.The level set tree may have an arbitrary �nite number of root nodes and everynode may have an arbitrary �nite number of 
hild nodes. Root nodes of the levelset tree 
orrespond to separated regions of the lowest level set of the fun
tion.The 
hild nodes of a given parent node 
orrespond to 
ertain separated regions ofthe level set whose level is one step higher than the level of the parent node. To3



every node we asso
iate a real value and a set. The set asso
iated with the nodeis the 
orresponding separated subset of the level set and the value asso
iatedwith the node is the minimum value of the fun
tion on the set asso
iated withthis node.Let f : S → R, S ⊂ R
d, be a fun
tion whose range is a �nite set:
{f(x) : x ∈ S} = {λ1, . . . , λN} (2)where λ1 < · · · < λN .De�nition 1 A level set tree is a multi-tree whose nodes are annotated withpairs (a, A), where a ∈ R and A ⊂ R

d. We 
all value a ∈ R the level of the
orresponding node. We give a re
ursive de�nition of the level set tree of fun
tion
f satisfying (2).1) Write the lowest level set of fun
tion f as

Λλ1
= A1 ∪ · · · ∪ AMwhere Aj, j = 1, . . . , M , are pairwise separated and ea
h Aj is 
onne
ted (no

Aj 
an be further written as a union of two separated sets). Then the level settree has M root nodes and to these nodes we asso
iate sets Aj and values aj =
min{f(x) : x ∈ Aj}, j = 1, . . . , M .2) Assume that we have a node of the tree for whi
h there is asso
iated set A ⊂ R

dand value a ∈ R. If {x ∈ A : f(x) > a} = ∅, then this node does not have
hildren. Otherwise, if {x ∈ A : f(x) > a} 6= ∅, write
{x ∈ A : f(x) > a} = B1 ∪ · · · ∪ BLwhere Bj, j = 1, . . . , L, are pairwise separated and ea
h Bj is 
onne
ted. Thegiven node has then L 
hildren with whi
h we asso
iate sets Bj and values bj =

min{f(x) : x ∈ Bj}, j = 1, . . . , L.From now on we will assume that fun
tion f is a density. Then we maywithout loss of generality assume that λ1 > 0 (sin
e for densities we may withoutloss of generality assume that Λ0 = R
d). This implies that level set Λλ1

of f has�nite volume.We will illustrate the de�nition by an example. In Figure 1 we display adensity fun
tion whi
h takes 5 di�erent values and has two modes. In Figure2 we display the 
orresponding level set tree. Two modes of the fun
tion arerepresented as two bran
hes of the tree.The separated parts of the level sets whi
h we asso
iate with the nodes of thelevel set tree usually have a 
omplex stru
ture. Indeed, for a fun
tion f : R
d →

R, the level sets are subsets of R
d. Only in the three-dimensional 
ase, when

f : R
3 → R, we may su

eed in dire
t visualization of these sets. Our strategy4
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tion of Figure 1. Frame a) shows a tree versionand frame b) shows a fun
tion version.is to 
al
ulate 
ertain 
hara
teristi
s of the sets and use these 
hara
teristi
s invisualization. In this arti
le we utilize only volumes and bary
enters of the setsasso
iated with the nodes in visualizing the level set tree. The volume of a set
A ⊂ R

d is volume(A) =
∫

A dx and the bary
enter of A isbary
enter(A) =
1volume(A)

∫

A
x dx.The bary
enter is a d-dimensional ve
tor giving the �
enter of mass� of a set. We
all volume plot a plot whi
h visualizes the volumes of separated parts of levelsets. We 
all bary
enter plot a plot whi
h visualizes the bary
enters.2.2 Volume plotThe standard tree plot of a level set tree as in Figure 2 visualizes the number oflo
al extremes and the levels of those extremes. With volume plots we visualizethe importan
e of lo
al extremes in terms of the ex
ess mass. Figure 3 showsexamples of volume plots. Figure 3 a) is a tree version of a volume plot andFigure 3 b) is a fun
tion version of a volume plot.Tree version of the volume plot. In the tree version of the volume plotnodes of the level set tree are represented as horizontal lines. The height of aline representing a node is determined by the level of the node (the level of the
orresponding level set). The length of the line representing a node is proportionalto the volume of the 
orresponding set. The parent-
hild relations are expressedby the left-right positioning of the nodes, so that the horizontal spa
e a 
hild6



node o

upies is 
ontained to the horizontal spa
e o

upied by the parent. Thisis possible, sin
e the sum of the volumes of the 
hild nodes is always less thanthe volume of the parent node.The left-right ordering of siblings (root nodes and the 
hild nodes of a givennode) may be done in various ways. We have applied the following rule in thisarti
le.1. Order �rst the root nodes. The leftmost root node is the one with the largestEu
lidean distan
e of the bary
enter from the origin. After that, the nextnode is the one with the 
losest Eu
lidean distan
e of the bary
enter fromthe bary
enter of the previous node.2. The 
hildren of a node will be ordered by the same rule as the root nodeswere ordered.Above we used for simpli
ity the phrase "the bary
enter of a node" when wemeant the bary
enter of the set asso
iated with the node.To show details in the upper levels of a volume plot we use a zoomed volumeplot, whi
h is a plot showing only the upper levels of the volume plot. Figure11 and Figure 13 in Se
tion 4 show examples of zoomed (fun
tion versions of)volume plots.Fun
tion version of the volume plot. We may asso
iate one dimensionaldensity fun
tions with ea
h tree version of a volume plot. We 
all these one di-mensional density fun
tions volume plot transformations. Volume plot transfor-mations give 
ertain one dimensional representations of the multivariate density,whi
h are not any sli
es, marginal densities, or 
onditional densities of the origi-nal density. We may de�ne volume plot transformations in the following way: aone dimensional density is a volume plot transformation of the multivariate den-sity f , if it belongs to the equivalen
e 
lass of one dimensional fun
tions whosetree version of the volume plot is identi
al with the tree version of volume plotof f . This equivalen
e 
lass is 
losed with respe
t to translations (shiftings). Wewill always 
hoose the representative g from the equivalen
e 
lass whi
h is su
hthat inf{t : g(t) ≥ 0} = 0. In addition, we 
hoose the representative whi
h is notskewed; that is, when a node of the level set tree of g has only one 
hild, thenthis 
hild has the same bary
enter as the parent.Let us denote with vp(f) : R → R a volume plot tranformation of a mul-tivariate density f : R
d → R. We may justify the volume plot transformationwith the following 2 fa
ts: (1) the level sets of vp(f) have as many pairwise sep-arated and 
onne
ted 
omponents as the level sets of f and (2) for all α ≥ 0,

∫

(f≥α) f =
∫

(vp(f)≥α) vp(f). The se
ond fa
t states that the ex
ess masses of den-sities are equal for all levels. Fa
ts (1) and (2) say together that vp(f) hasisomorphi
 mode stru
ture with f . 7



The ex
ess mass asso
iated with a node of the level set tree. We maystate the mode isomorphism of f and vp(f) still in other way with the help ofex
ess masses. Ex
ess mass may be asso
iated with every node of a level settree. To de�ne the ex
ess mass asso
iated with a node we introdu
e the followingnotation. Assume that with node n of a level set tree are asso
iated value a andset A. Then we write
n = (a, A), set(n) = A, val(n) = a.Furthermore, with parent(n) we mean the unique parent of node n. We say thata node is a de
endant of node n if it is either a 
hild of n or a 
hild of an otherde
endant of n.De�nition 2 The ex
ess mass asso
iated with node n of the level set tree ofdensity fun
tion f is de�ned byex
mass(n) =

∫set(n)
(f(x) − val(parent(n))) dx

=
∑

{volume(set(n0)) · [val(n0) − val(parent(n0))] :

n0 = n or n0 is a de
endant of n} , (3)where density f satis�es (2) with λ1 > 0. For the 
ase that n is a root node, wedenote val(parent(n)) = 0.In words, the ex
ess mass is the volume of the area whi
h the fun
tion delineatesover a given level, in a given bran
h of the level set tree. When a level set tree hasonly one root node, then the ex
ess mass of this root node is equal to one. Ex
essmasses of the other nodes are fra
tions of the total probability mass. We statethe mode isomorphism of f and vp(f) in the following way: the level set trees of
f and vp(f) are isomorphi
 and ex
ess masses asso
iated with the 
orrespondingnodes of these trees are equal. Ex
ess masses has been applied in 
luster analysisand mode testing for example by Hartigan (1987), Müller and Sawitzki (1991),Minnotte (1997).Diagnosti
s on kurtosis. By 
omparing volumes of level sets at di�erent levelswe may get information about the kurtosis. If the volumes of level sets arede
reasing fast when we move to the level sets 
orresponding to higher levels,this may indi
ate that the density has sharp peaks.2.3 Bary
enter plotsThe bary
enter plot draws the �skeleton� of the fun
tion, visualizing lo
ations ofthe modes and giving information on the skewness. Figure 4 shows an exampleof a bary
enter plot. 8
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b) y−coordinateFigure 4: Bary
enter plot of the fun
tion of Figure 1.The bary
enter plot 
onsists of d windows when the fun
tion is d dimensional.We have a window for ea
h 
oordinate. Ea
h window shows the positions of one
oordinate of bary
enters for di�erent levels. Bary
enter plots are tree stru
turedplots where the verti
al position of a node is determined by the level of the
orresponding separated 
omponent of a level set, and the horizontal positioningof a node in the ith window is determined by the ith 
oordinate of the bary
enterof the 
orresponding separated 
omponent of a level set. A parent-
hild relationis expressed by the straight line joining the parent with the 
hild. Note that theselines may have 
rossings.When density f : R
d → R is unimodal, the bary
enter plot visualizes the

1-dimensional 
urve bc : [0, M ] → R
d, bc(α) = bary
enter(Λα), in d-dimensionalspa
e, where M = supx∈Rd f(x) < ∞ and Λα is the level set de�ned in (1). Inthe general multimodal 
ase Λα may have many separated 
omponents and thebary
enter plot visualizes the mapping bc : [0, M ] → (Rd)∞, bc(α) = (b1, . . . , bl)where bi ∈ R

d is the bary
enter of the ith separated 
omponent of Λα.To identify the nodes between di�erent windows of a bary
enter plot (andbetween volume plots and a bary
enter plot) we label the modes. The labelingof modes will uniquely determine the 
orresponden
e of all nodes in di�erentwindows. However, to ease the identi�
ation of nodes a
ross di�erent windows,we will also 
olor the nodes. We will �rst 
hoose distin
t 
olors for the leaf nodesand then travel towards the root nodes, by 
hanging the 
olor always when twobran
hes are merging. We will also 
olor the lines joining a 
hild and a parent.The 
olor of a line will be the same as the 
olor of the 
hild node whi
h is at the
hild end (upper end) of the line. This printed version of the arti
le shows the
olors only in gray s
ale. 9



Diagnosti
s on skewness. If the bary
enters of the level sets are not the samefor di�erent levels, this may indi
ate skewness of the fun
tion. In Figure 4 onemay note the slight skewness of the bran
h leading to the mode labelled as M1,by noting the 
hange of x-
oordinate of bary
enters as the level grows.2.4 Computational 
omplexityAlgorithms for �nding the level set tree depend on the underlying fun
tion. How-ever, one may formulate some algorithms whi
h apply for a number situations.In this arti
le we 
onsider density estimators whose level sets may be writtenas unions of a �nite number of 
onne
ted sets whi
h belong to a basi
 library of�atoms�. Level sets of histogram estimates are unions of bins. A kernel estimatemay be approximated by 
al
ulating its values at gridpoints, and forming a pie
e-wise 
onstant fun
tion whi
h is 
onstant over the re
tangles whose 
enters arethe gridpoints. Then these re
tangles 
entered at the gridpoints form the libraryof atoms.The main step in algorithms for forming the level set tree is to �nd the maxi-mally separated regions of a given (part of a) level set. That is, we want to �nd apartition of the level set to pairwise separated sets, where ea
h set is 
onne
ted.A naive algorithm for de
omposing a level set, whi
h is a union of atoms, to thepairwise separated 
onne
ted 
omponents is based on pairwise 
omparisons ofatoms to �nd whi
h atoms tou
h ea
h other.More pre
isely, for a given atom A we �nd all atoms whi
h tou
h atom A andput these atoms to a sta
k. We pull atoms from the sta
k one at a time and �ndatoms whi
h tou
h this atom pulled from the sta
k, and put also these atomsto the sta
k (unless they were already en
ountered). Continuing in this way aslong as the sta
k is not empty we �nd the separated 
onne
ted 
omponent whoseone member is atom A. This pro
edure must be repeated for all atoms not yetasso
iated to some 
omponent.Let us analyze the 
omplexity of �nding the level set tree for the 
ase in whi
hwe apply the naive algorithm for �nding the separated 
onne
ted 
omponents oflevel sets. Assume that the given estimate has Q di�erent level sets and everylevel set is a union of at most N atoms. For ea
h level set, naive algorithm makesat most N(N − 1) tests between atoms to �nd whi
h atoms tou
h ea
h other.In our examples testing whether two atoms tou
h ea
h other takes d steps, when
d is the dimension of the Eu
lidean spa
e where the estimate is de�ned. Then,under these assumptions, 
onstru
tion of the level set tree from the estimate willtake

O
(

QN2d
) (4)steps.For the 
ase of the histogram estimator the naive algorithm is feasible. Forthe 
ase of a kernel estimate evaluated on a grid this algorithm is not feasible,10



sin
e the multivariate grid with the help of whi
h we approximate the kernel esti-mate may 
ontain a huge number of knots. One may develop more sophisti
atedalgorithms whi
h are based on a dynami
 programming algorithm, whi
h �ndssolutions for spatially lo
al subsets of the support of the estimate, and builds theglobal solution from the previously found solutions to the lo
al problems. Thiskind of algorithm is des
ribed in Klemelä (2005).3 Level set trees from histograms and kernel esti-matesWe will 
onsider visualization of histogram and kernel estimates with level settrees.3.1 Histogram estimatorWe 
onstru
t histogram estimates by �rst �nding minimum and maximum valuesof every variable, 
onstru
ting the re
tangle whose verti
es are these minima andmaxima, 
onstru
ting bins by dividing every side of the re
tangle into an equalnumber of intervals, and �nally 
ounting the number of observations in ea
h bin.Figure 5 shows examples of two dimensional histograms. These histograms are
onstru
ted from a sample of size 200 from a density, whi
h is an equal mixtureof three standard Gaussian densities. The three 
omponents of the mixture are
N(µi, I), i = 1, 2, 3, where µ1 = (0, 0), µ2 = (0, 4), µ3 = (4, 0), and I is 2 × 2unit matrix. Figure 5 shows two histograms with 82 and 132 bins. On the lefthand side we show perspe
tive plots and on the right hand side volume plots. InFigure 6 we show bary
enter plots for the two histograms.Note that although the main appli
ation of level set trees is for the 
aseswhere dimension is higher than 2, we may also apply level set trees to highlightthe number of lo
al maxima of the estimate, whi
h is often not easy to see from aperspe
tive plot of a histogram. The histogram of Figure 5 b) has 7 lo
al maxima,whi
h 
an be seen from the volume plot and from the bary
enter plot.It is feasible to 
onstru
t level set trees from histograms with the algorithm ofSe
tion 2.4. The number of bins gives an upper bound for the number of "atoms"of the level sets. The normal referen
e rule for the number of bins suggests thatthe number of bins should be 
hosen as N ≍ nd/(2+d), see S
ott (1992), page 82.3.2 Kernel estimatorDe�ne the kernel estimator based on data X1, . . . , Xn ∈ R

d by
fn(x) = (nhd)−1

n
∑

i=1

K((x − Xi)/h), x ∈ R
d,11
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enter plots from the histograms in Figure 5where h > 0 is the smoothing parameter and K : R
d → R is the kernel fun
tion.In order to apply level set trees we evaluate the kernel estimate at the knots of agrid and then 
onsider the fun
tion whi
h is 
onstant over the re
tangles whose
enters are the knots. We also quantize the kernel estimate.The right number of quantization levels depends on the smoothness of theestimate. We may 
hoose the number of quantization levels by in
reasing thenumber of levels until the number of lo
al extremes of the quantized estimateis not in
reasing. Note that the problem of the 
hoi
e of the quantization lev-els is related to the problem of 
hoosing the levels for a 
ontour plot of a twodimensional kernel estimate.In Figure 7 we visualize kernel estimates. The estimates are based on thesame sample of 200 whi
h was 
onsidered in Se
tion 3.1. On the left hand sidewe show perspe
tive plots of the kernel estimates and on the right hand sidewe show the 
orresponding volume plots, based on 80 levels and 642 gridpoints.Bartlett-Epane
hnikov produ
t kernel is used in the estimates. Figure 8 showsbary
enter plots for the three estimates.The volume plot in Figure 7 
) does not reveal all 27 lo
al extremes, whi
hare visible in the bary
enter plot of Figure 8 
). On the other hand, from thevolume plot one sees the importan
e of the modes in terms of the ex
ess mass.The algorithm des
ribed in Se
tion 2.4 is not feasible for kernel estimates sin
e13
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Figure 9: Tetrahedron with verti
es m1, m2, m3, and m4. Distan
e betweenverti
es is D.the number of gridpoints needed to approximate a

urately a kernel estimate ishuge in multivariate 
ases. Klemelä (2005) des
ribes a dynami
 programmingalgorithm for �nding the separated 
omponents of level sets of a kernel estimate.4 ExamplesWe will give examples from estimation and visualization of mixtures of Gaussiandensities. We 
onsider 3 and 4 dimensional mixtures whose 
omponents are 
loseto ea
h other.4.1 Three dimensional exampleWe 
onsider an equal mixture of standard Gaussian densities. The means of the
omponents of the mixture lie on the verti
es of a tetrahedron. We 
hoose asmeans
m1 = D × (1/2, 0, 0),

m2 = D × (−1/2, 0, 0),

m3 = D × (0,
√

3/2, 0)

m4 = D × (0, 1/(2
√

3),
√

2/3).Points mi lie on the verti
es of a tetrahedron and the distan
e between verti
esis D. See Figure 9.When we 
hoose D su�
iently small then two dimensional proje
tions do notreveal the modes of the density. In Figure 10 a)-
) we show marginal densitieson the three 
oordinate planes of R3 when D = 3. One 
an see that there are nobetter proje
tions than the 
oordinate planes. When the distan
e between the
omponents of the mixture is large, then the proje
tion to x-y-plane reveals all 4modes: in Figure 10 d) we show the marginal density on x-y-plane when D = 4.16



a) b)

c) d)

Figure 10: Marginal densities of a mixture of 4 standard Gaussian densities in
R

3; a) x-y plane, D=3; b) x-z plane, D=3; 
) y-z plane, D=3; d) x-y plane, D=4.
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For the simulation example we 
hoose distan
e between modes D = 3. Whenthe sample size is su�
iently large, then 3-dimensional histogram �nds all 4modes of the underlying density, even when marginal densities do not reveal themodes.In Figure 11 we present a histogram, based on a sample of size 5000. We 
hose9 bins for ea
h dire
tion. The mode labelled M1 has the largest ex
ess mass.The bary
enter plots in Figure 11 reveal that the lo
ations of the modes ofthe estimate are not too far from the lo
ations of the modes of the true density.In fa
t, the lo
ations of the modes are
M1 = (−0.02, 1.1, 2.1) ≈ m4 = (0, 0.9, 2.4),

M2 = (−0.02, 3.2, 0.2) ≈ m3 = (0, 2.6, 0),

M3 = (−1.0, 0.04, 0.2) ≈ m2 = (−1.5, 0, 0),

M4 = (1.0, 0.04, 0.2) ≈ m1 = (1.5, 0, 0).By M1-M4 we denote the bary
enters of the sets where the histogram estimatea
hieves a lo
al maximum.4.2 Four dimensional exampleWe 
onsider an equal mixture of standard Gaussian densities. The means of the
omponents of the mixture lie on the verti
es of a pentahedron. We 
hoose asmeans
m1 = D × (1/2, 0, 0, 0),

m2 = D × (−1/2, 0, 0, 0),

m3 = D × (0,
√

3/2, 0, 0),

m4 = D × (0, 1/(2
√

3),
√

2/3, 0),

m5 = D × (0, 1/(2
√

3), 1/(2
√

6),
√

15/24).Points mi lie on the verti
es of a pentahedron and the distan
e between verti
esis D. When we 
hoose mi su�
iently 
lose to ea
h other, then two dimensionalproje
tions do not reveal the modes of the density. In Figures 12 a)-f) we showmarginal densities on the six 
oordinate planes of R
4 of the equal mixture ofstandard Gaussian densities, with D = 4. We denote 
oodinate dire
tions by

(x, y, z, u). Even when the distan
e between 
omponents of the mixture is large,there exists no proje
tion to the 
oordinate planes that would reveal all 5 modesat on
e.For the simulation example we 
hoose distan
e between modes D = 4 andsample size 2000. We present in Figure 13 a kernel estimate with h = 1 andBartlett-Epane
hnikov produ
t kernel. We quantized to 40 levels and evaluated18
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a) b) c)

d) e) f)Figure 12: Marginal densities of a mixture of 5 standard Gaussian densities in
R

4, when D = 4; a) x-y plane; b) x-z plane; 
) x-u plane; d) y-z plane; e) y-uplane; f) z-u plane.the estimate at 164 gridpoints. With only 16 gridpoints in ea
h dire
tion thekernel estimator is still more a

urate than the histogram estimator.The lo
ations of the modes of the estimate in Figure 13 are
M1 = (0.2, 0.7, 0.9, 3.1) ≈ m5 = (0, 1.2, 0.8, 3.2),

M2 = (0.2, 1.4, 3.2,−0.3) ≈ m4 = (0, 1.2, 3.3, 0),

M3 = (2.2, 0.4, 0.2,−0.3) ≈ m1 = (2, 0, 0, 0),

M4 = (0.2, 3.4,−0.6,−0.3) ≈ m3 = (0, 3.5, 0, 0),

M5 = (−1.8, 0.02, 0.2, 0.4) ≈ m2 = (−2, 0, 0, 0).One 
an see that the lo
ations of the modes of the estimate are not too far fromthe lo
ations of the modes of the true density.5 Summary and further work5.1 SummaryStudying level sets for a series of levels provides information on the shape ofa multivariate fun
tion. Level sets has been applied in density estimation andmode dete
tion in 3 and 4 dimensional 
ases by S
ott (1992) and Härdle and S
ott(1992), who present a sliding te
hnique for visualizing 4 dimensional fun
tions.20
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They visualize 3D density 
ontours as the fourth variable is 
hanged over itsrange.Our aim is to apply level sets in arbitrary dimension with the help of levelset trees. Level set trees are 
omplex obje
ts whi
h give an alternative way torepresent fun
tions. This representation is however fruitful for visualizing manyfeatures of fun
tions. We are not able to make a single visualization whi
h wouldwithout loss of information visualize a multivariate fun
tion. Instead, we makea number of visualizations and ea
h plot visualizes one aspe
t or feature of theoriginal fun
tion. Our approa
h is an alternative to the approa
h of proje
ting thedata to a low dimensional spa
e. Studying proje
tions and marginal densities isin many 
ases su�
ient but proje
tions may hide some high dimensional features.In density estimation we are interested how the probability mass is distributedover the d-dimensional Eu
lidean spa
e. Lo
al extremes of the density fun
tionexpress 
on
entration of the probability mass. We are interested both in visual-izing the lo
ations of these lo
al extremes, and also in visualizing the size of theprobability mass asso
iated with ea
h lo
al extreme. To a
hieve these aims wehave introdu
ed the volume plot, whi
h visualizes the amount of probability massasso
iated with ea
h lo
al extreme, and the bary
enter plot, whi
h visualizes thelo
ations of these probability masses. The volume plot de�nes a one dimensionaltransformation for multivariate densities, whi
h is not any sli
e, 
onditional den-sity, or marginal density of the original density.5.2 Further workIn one and two dimensional 
ases the art of smoothing 
onsists often in theinspe
tion of the 
hanges of the estimate as the smoothing parameter of theestimate 
hanges. Formal tools to help this pro
ess has been given for exampleby Minnotte and S
ott (1993), Minnotte (1997), Chaudhuri and Marron (1999).The graphi
al representations of level set trees may be utilized to extend versionsof these tools to higher than 2 dimensional 
ases.We have applied only volumes and bary
enters in this arti
le. Other poten-tially useful 
hara
teristi
s of sets in
lude diameter, perimeter, radius (minimum,maximum, average), and 
ompa
tness (ratio of the perimeter to the volume).It is also interesting to apply level sets to visualize other multivariate fun
-tions than density fun
tions. For example, it is important to dete
t modes fromregression fun
tions. Bary
enter plots may be applied to dete
t monotone be-haviour of a fun
tion with respe
t to some variables, whi
h is often of interest inregression fun
tion estimation.Cluster analysis. A

ording to Hartigan (1975), page 205, 
lusters are regionsof high density separated from other su
h regions by regions of low density. Thus
lusters are separated subsets of some level set {x ∈ R
d : f(x) ≥ α} of theunderlying density fun
tion f . 22



Typi
al 
lustering algorithms in
lude algorithms based on hierar
hi
al treesand the k-means algorithm. Note that the output of these algorithms is a par-tition of the sample: they will not provide 
lusters de�ned as subsets of thesample spa
e. For some appli
ations this is not su�
ient and one needs addi-tional analysis to identify the lo
ations of the 
lusters of sample points. Anotherproblem with the k-means algorithm and hierar
hi
al trees is that they requireprior knowledge of the number of 
lusters.We may try to estimate 
lusters by 
onstru
ting a nonparametri
 density esti-mate and �nding the separated subsets of a level set of the estimate 
orrespondingto some low level. Graphi
al representations of level set trees provide tools forrealizing su
h an approa
h to 
lustering. An advantage of 
luster analysis basedon density estimation is that with this approa
h we may a
quire lots of usefulinformation on the shape of the density fun
tion, and not just the 
lusters.A
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