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Abstract

We present a method for visualization of multivariate functions. The
method is based on a tree structure, built from separated parts of level
sets of a function, which we call level set tree. The method is applied for
visualization of estimates of multivarate density functions. With different
graphical representations of level set trees we may visualize the number
and location of modes, excess masses associated with the modes, and cer-
tain shape characteristics of the estimate. We present simulation examples
where projecting data to two dimension does not help to reveal the modes
of the density, but with the help of level set trees one may detect the modes.
We argue that level set trees provide a useful method for exploratory data
analysis.

Keywords: Cluster analysis; Exploratory data analysis; Mixtures; Mode detec-
tion; Multivariate data.

1 Introduction

Nonparametric density estimators have been succesfully applied in exploratory
data analysis for one and two dimensional data. For example, it is possible to
detect modes by the inspection of one and two dimensional density estimates.
For more than two dimensional data the difficulties with visualizing density esti-
mates have often hindered the application of nonparametric density estimation.
We construct a method for visualization of multivariate functions which can in-
crease usefulness of multivariate density estimates in exploration and mining of
multivariate data.

We present a method of visualization which is based on the level sets of the
function. A level set is the set of those points at which the function exceeds a
given value; level set of function f : RY — R at level « is defined as

Aa:{xERd:f(x)Za}. (1)
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We assume that the function to be visualized has only a finite number of different
level sets, in other words, it is piecewise constant. If the function is not piecewise
constant, then we will approximate it with such a function, as will be done for
kernel estimates with a continuous kernel.

A level set tree is a tree structure formed by taking as root nodes the separated
regions of the lowest level set of the function. The child nodes of a given node
correspond to the separated regions of a part of the level set whose level is one
step higher than the level of this parent node. Thus the disjoint regions of a level
set will be startpoints for the different branches of the tree.

In density estimation we are interested in the shape of the density function:
the number and location of modes, relative size of the modes, skewness, kurtosis,
tail behaviour of the function, and so on. The level set tree will reflect the mode
structure of the function, because different branches of the tree will correspond to
distinct modes (local extremes) of the function. By comparing level sets related
to different levels one can find information on the shape of the density, also in high
dimensional spaces. In particular, we may look how the volumes and barycenters
of level sets are changing as a function of the level.

We present the volume plot and the barycenter plot for visualization of density
functions. The volume plot visualizes the number and relative size of the modes of
the density, and gives information on the kurtosis. With a mode we mean a local
extreme of the density and with size of a mode we mean the probability mass
associated with this local extreme, that is, the excess mass of the local extreme.
The barycenter plot draws the “skeleton” of the function, visualizing locations of
the modes and giving information on the skewness.

We claim that even in cases where projections may reveal the modes of the
underlying density, level set trees provide an easy to use exploratory method
which gives additional insight into the shape of the density. Furthermore, there
exist examples where one or two dimensional marginal densities do not reveal the
true number of modes of the density. We show this by constructing examples
of mixtures of Gaussian densities, where the components of the mixture are so
close to each other that all marginal densities show only few modes. For these
examples level set trees however provide a method for finding the number and
locations of the modes.

Level set trees provide a method for visualizing density estimates. Methods
for making inference whether local maxima of a density estimate correspond to
the modes of the underlying density has to be studied elsewhere. For visualiza-
tion and inference concerning the mode structure of one and two dimensional
densities, see for example Minnotte and Scott (1993), Marchette and Wegman
(1997), Minnotte, Marchette and Wegman (1998), Chaudhuri and Marron (1999),
Godtliebsen, Marron and Chaudhuri (2002). Various mode testing procedures
are presented in Silverman (1981), Hartigan and Hartigan (1985), Miiller and
Sawitzki (1991), Hartigan and Mohanty (1992), Mammen, Marron and Fisher
(1992), Fisher, Mammen and Marron (1994), Minnotte (1997), and Davies and



Kovac (2001). Since volume plots visualize excess masses associated with the
local extremes of the density, they help to make a judgement whether the local
extremes of an estimate correspond to the true modes of the underlying den-
sity function. Excess masses in mode detection has been applied for example by
Miiller and Sawitzki (1991).

In Section EZ1] we define level set trees for general multivariate functions.
In Sections and we define volume plot and barycenter plot and discuss
basic diagnostics with the help of these plots. In Section EZ4] we discuss the
computational complexity of calculating a level set tree. In Section B we illustrate
the level set trees used for visualizing histograms and kernel estimates. In Section
Ml we give examples of the estimation of multimodal densities. Examples are 3
and 4 dimensional mixtures of standard Gaussian densities. Section Bl contains a
summary and discusses further work.

Computations and graphics in this article have been made with an R-package
called "denpro". This package may be downloaded from http://denstruct.net.

2  Definition of level set trees and level set plots

We will define the level set tree, define the volume plot and the barycenter plot,
discuss basic diagnostics which can be made using these plots, and finally discuss
the computational complexity of calculating the level set trees in some typical
examples.

2.1 Definition of the level set tree

The function from which we form the level set tree is assumed to be piecewise
constant. Thus the function has a finite number of distinct level sets. The level
set tree is a tree whose nodes represent separated subsets of the level sets of
the function. It is possible to define a corresponding structure for continuous
functions but we consider only the discrete case because this case is relevant for
the practical calculation of level set trees.

We say that the sets A, B C R? are separated if inf{||z—y| : z € A, y € B} >
0 where || - || denotes Euclidean distance. Thus, two sets are said to be separated
if there is some space between them. We say that set A C R? is connected if for
each nonempty B, C' C R% such that A = BUC, sets B and C' are not separated.
Thus, a set is said to be connected if it cannot be written as a union of two
separated sets.

The level set tree may have an arbitrary finite number of root nodes and every
node may have an arbitrary finite number of child nodes. Root nodes of the level
set tree correspond to separated regions of the lowest level set of the function.
The child nodes of a given parent node correspond to certain separated regions of
the level set whose level is one step higher than the level of the parent node. To



every node we associate a real value and a set. The set associated with the node
is the corresponding separated subset of the level set and the value associated
with the node is the minimum value of the function on the set associated with
this node.

Let f: S — R, S C R% be a function whose range is a finite set:

{f():xz € St={\,...,\n} (2)
where A\ < -+ < Ay

Definition 1 A level set tree is a multi-tree whose nodes are annotated with
pairs (a, A), where a € R and A C R%. We call value a € R the level of the
corresponding node. We give a recursive definition of the level set tree of function

f satisfying (3).
1) Write the lowest level set of function [ as

Ay, =AU+ UAy

where A;, j = 1,..., M, are pairwise separated and each A; is connected (no
A; can be further written as a union of two separated sets). Then the level set

tree has M root nodes and to these nodes we associate sets A; and values a; =
min{f(z):x € A;}, j=1,..., M.

2) Assume that we have a node of the tree for which there is associated set A C R?
and value a € R. If {x € A : f(x) > a} = 0, then this node does not have
children. Otherwise, if {x € A: f(x) > a} # 0, write

{reA: f(x) >a} =ByU---UBy

where B;, j = 1,...,L, are pairwise separated and each B; is connected. The
given node has then L children with which we associate sets B; and values b; =
min{f(z) :x € B;}, j=1,...,L.

From now on we will assume that function f is a density. Then we may
without loss of generality assume that A\; > 0 (since for densities we may without
loss of generality assume that Ag = R¢). This implies that level set Ay, of f has
finite volume.

We will illustrate the definition by an example. In Figure [l we display a
density function which takes 5 different values and has two modes. In Figure
we display the corresponding level set tree. Two modes of the function are
represented as two branches of the tree.

The separated parts of the level sets which we associate with the nodes of the
level set tree usually have a complex structure. Indeed, for a function f : R —
R. the level sets are subsets of R?. Only in the three-dimensional case, when
f: R?® — R, we may succeed in direct visualization of these sets. Our strategy



a) perspective plot

Figure 1: Piecewise constant function
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Figure 2: Level set tree of the function of Figure[[l For each node we associate
a value and a set.
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Figure 3: Volume plots of the function of Figure[ll Frame a) shows a tree version
and frame b) shows a function version.

is to calculate certain characteristics of the sets and use these characteristics in
visualization. In this article we utilize only volumes and barycenters of the sets
associated with the nodes in visualizing the level set tree. The volume of a set
A C R is volume(A) = [, dz and the barycenter of A is

1
barycenter(A) = volume(4) /Axdx.

The barycenter is a d-dimensional vector giving the “center of mass” of a set. We
call volume plot a plot which visualizes the volumes of separated parts of level
sets. We call barycenter plot a plot which visualizes the barycenters.

2.2  Volume plot

The standard tree plot of a level set tree as in Figure [J visualizes the number of
local extremes and the levels of those extremes. With volume plots we visualize
the importance of local extremes in terms of the excess mass. Figure Bl shows
examples of volume plots. Figure Bl a) is a tree version of a volume plot and
Figure B b) is a function version of a volume plot.

Tree version of the volume plot. In the tree version of the volume plot
nodes of the level set tree are represented as horizontal lines. The height of a
line representing a node is determined by the level of the node (the level of the
corresponding level set). The length of the line representing a node is proportional
to the volume of the corresponding set. The parent-child relations are expressed
by the left-right positioning of the nodes, so that the horizontal space a child



node occupies is contained to the horizontal space occupied by the parent. This
is possible, since the sum of the volumes of the child nodes is always less than
the volume of the parent node.

The left-right ordering of siblings (root nodes and the child nodes of a given
node) may be done in various ways. We have applied the following rule in this
article.

1. Order first the root nodes. The leftmost root node is the one with the largest
Euclidean distance of the barycenter from the origin. After that, the next
node is the one with the closest Euclidean distance of the barycenter from
the barycenter of the previous node.

2. The children of a node will be ordered by the same rule as the root nodes
were ordered.

Above we used for simplicity the phrase "the barycenter of a node" when we
meant the barycenter of the set associated with the node.

To show details in the upper levels of a volume plot we use a zoomed volume
plot, which is a plot showing only the upper levels of the volume plot. Figure
M and Figure [3 in Section Hl show examples of zoomed (function versions of)
volume plots.

Function version of the volume plot. We may associate one dimensional
density functions with each tree version of a volume plot. We call these one di-
mensional density functions volume plot transformations. Volume plot transfor-
mations give certain one dimensional representations of the multivariate density,
which are not any slices, marginal densities, or conditional densities of the origi-
nal density. We may define volume plot transformations in the following way: a
one dimensional density is a volume plot transformation of the multivariate den-
sity f, if it belongs to the equivalence class of one dimensional functions whose
tree version of the volume plot is identical with the tree version of volume plot
of f. This equivalence class is closed with respect to translations (shiftings). We
will always choose the representative g from the equivalence class which is such
that inf{¢ : g(¢) > 0} = 0. In addition, we choose the representative which is not
skewed; that is, when a node of the level set tree of g has only one child, then
this child has the same barycenter as the parent.

Let us denote with v,(f) : R — R a volume plot tranformation of a mul-
tivariate density f : R? — R. We may justify the volume plot transformation
with the following 2 facts: (1) the level sets of v,(f) have as many pairwise sep-
arated and connected components as the level sets of f and (2) for all a > 0,
Jirsa) I = Jaw,(5)>a) Up(f). The second fact states that the ezcess masses of den-
sities are equal for all levels. Facts (1) and (2) say together that v,(f) has
isomorphic mode structure with f.



The excess mass associated with a node of the level set tree. We may
state the mode isomorphism of f and wv,(f) still in other way with the help of
excess masses. Excess mass may be associated with every node of a level set
tree. To define the excess mass associated with a node we introduce the following
notation. Assume that with node n of a level set tree are associated value a and
set A. Then we write

n=(a,A), set(n) = A, val(n) = a.

Furthermore, with parent(n) we mean the unique parent of node n. We say that
a node is a decendant of node n if it is either a child of n or a child of an other
decendant of n.

Definition 2 The excess mass associated with node n of the level set tree of
density function f is defined by

excmass(n) = /set(n)(f(x) — val(parent(n))) dx

= ) {volume(set(nyg)) - [val(ng) — val(parent(ny))] :
ng =n or ng is a decendant of n}, (3)

where density f satisfies (@) with \y > 0. For the case that n is a root node, we
denote val(parent(n)) = 0.

In words, the excess mass is the volume of the area which the function delineates
over a given level, in a given branch of the level set tree. When a level set tree has
only one root node, then the excess mass of this root node is equal to one. Excess
masses of the other nodes are fractions of the total probability mass. We state
the mode isomorphism of f and v,(f) in the following way: the level set trees of
f and v,(f) are isomorphic and excess masses associated with the corresponding
nodes of these trees are equal. Excess masses has been applied in cluster analysis
and mode testing for example by Hartigan (1987), Miiller and Sawitzki (1991),
Minnotte (1997).

Diagnostics on kurtosis. By comparing volumes of level sets at different levels
we may get information about the kurtosis. If the volumes of level sets are
decreasing fast when we move to the level sets corresponding to higher levels,
this may indicate that the density has sharp peaks.

2.3 Barycenter plots

The barycenter plot draws the “skeleton” of the function, visualizing locations of
the modes and giving information on the skewness. Figure Bl shows an example
of a barycenter plot.
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Figure 4: Barycenter plot of the function of Figure [

The barycenter plot consists of d windows when the function is d dimensional.
We have a window for each coordinate. Each window shows the positions of one
coordinate of barycenters for different levels. Barycenter plots are tree structured
plots where the vertical position of a node is determined by the level of the
corresponding separated component of a level set, and the horizontal positioning
of a node in the ith window is determined by the ith coordinate of the barycenter
of the corresponding separated component of a level set. A parent-child relation
is expressed by the straight line joining the parent with the child. Note that these
lines may have crossings.

When density f : R — R is unimodal, the barycenter plot visualizes the
1-dimensional curve b, : [0, M] — R%, b.(a) = barycenter(A,), in d-dimensional
space, where M = sup,cga f(2) < 0o and A, is the level set defined in (). In
the general multimodal case A, may have many separated components and the
barycenter plot visualizes the mapping b, : [0, M] — (R%)*, b.(a) = (b, ..., ;)
where b; € R? is the barycenter of the ith separated component of A,.

To identify the nodes between different windows of a barycenter plot (and
between volume plots and a barycenter plot) we label the modes. The labeling
of modes will uniquely determine the correspondence of all nodes in different
windows. However, to ease the identification of nodes across different windows,
we will also color the nodes. We will first choose distinct colors for the leaf nodes
and then travel towards the root nodes, by changing the color always when two
branches are merging. We will also color the lines joining a child and a parent.
The color of a line will be the same as the color of the child node which is at the
child end (upper end) of the line. This printed version of the article shows the
colors only in gray scale.



Diagnostics on skewness. If the barycenters of the level sets are not the same
for different levels, this may indicate skewness of the function. In Figure H one
may note the slight skewness of the branch leading to the mode labelled as M1,
by noting the change of x-coordinate of barycenters as the level grows.

2.4 Computational complexity

Algorithms for finding the level set tree depend on the underlying function. How-
ever, one may formulate some algorithms which apply for a number situations.

In this article we consider density estimators whose level sets may be written
as unions of a finite number of connected sets which belong to a basic library of
“atoms”. Level sets of histogram estimates are unions of bins. A kernel estimate
may be approximated by calculating its values at gridpoints, and forming a piece-
wise constant function which is constant over the rectangles whose centers are
the gridpoints. Then these rectangles centered at the gridpoints form the library
of atoms.

The main step in algorithms for forming the level set tree is to find the maxi-
mally separated regions of a given (part of a) level set. That is, we want to find a
partition of the level set to pairwise separated sets, where each set is connected.
A naive algorithm for decomposing a level set, which is a union of atoms, to the
pairwise separated connected components is based on pairwise comparisons of
atoms to find which atoms touch each other.

More precisely, for a given atom A we find all atoms which touch atom A and
put these atoms to a stack. We pull atoms from the stack one at a time and find
atoms which touch this atom pulled from the stack, and put also these atoms
to the stack (unless they were already encountered). Continuing in this way as
long as the stack is not empty we find the separated connected component whose
one member is atom A. This procedure must be repeated for all atoms not yet
associated to some component.

Let us analyze the complexity of finding the level set tree for the case in which
we apply the naive algorithm for finding the separated connected components of
level sets. Assume that the given estimate has () different level sets and every
level set is a union of at most N atoms. For each level set, naive algorithm makes
at most N(N — 1) tests between atoms to find which atoms touch each other.
In our examples testing whether two atoms touch each other takes d steps, when
d is the dimension of the Euclidean space where the estimate is defined. Then,
under these assumptions, construction of the level set tree from the estimate will
take

O (QN?d) (4)
steps.

For the case of the histogram estimator the naive algorithm is feasible. For
the case of a kernel estimate evaluated on a grid this algorithm is not feasible,
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since the multivariate grid with the help of which we approximate the kernel esti-
mate may contain a huge number of knots. One may develop more sophisticated
algorithms which are based on a dynamic programming algorithm, which finds
solutions for spatially local subsets of the support of the estimate, and builds the
global solution from the previously found solutions to the local problems. This
kind of algorithm is described in Klemel& (2005).

3 Level set trees from histograms and kernel esti-
mates

We will consider visualization of histogram and kernel estimates with level set
trees.

3.1 Histogram estimator

We construct histogram estimates by first finding minimum and maximum values
of every variable, constructing the rectangle whose vertices are these minima and
maxima, constructing bins by dividing every side of the rectangle into an equal
number of intervals, and finally counting the number of observations in each bin.

FigureBlshows examples of two dimensional histograms. These histograms are
constructed from a sample of size 200 from a density, which is an equal mixture
of three standard Gaussian densities. The three components of the mixture are
N (i, I), i = 1,2,3, where p; = (0,0), po = (0,4), puz = (4,0), and I is 2 x 2
unit matrix. Figure Bl shows two histograms with 82 and 132 bins. On the left
hand side we show perspective plots and on the right hand side volume plots. In
Figure il we show barycenter plots for the two histograms.

Note that although the main application of level set trees is for the cases
where dimension is higher than 2, we may also apply level set trees to highlight
the number of local maxima of the estimate, which is often not easy to see from a
perspective plot of a histogram. The histogram of Figure[Hb) has 7 local maxima,
which can be seen from the volume plot and from the barycenter plot.

It is feasible to construct level set trees from histograms with the algorithm of
Section 224l The number of bins gives an upper bound for the number of "atoms"
of the level sets. The normal reference rule for the number of bins suggests that
the number of bins should be chosen as N < n%/(*9)_see Scott (1992), page 82.

3.2 Kernel estimator

Define the kernel estimator based on data X, ..., X, € R? by

n

fa(@) = (nAN ™" K((x — X3)/h), z € RY,

i=1

11
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Figure 6: Barycenter plots from the histograms in Figure

where h > 0 is the smoothing parameter and K : R¢ — R is the kernel function.
In order to apply level set trees we evaluate the kernel estimate at the knots of a
grid and then consider the function which is constant over the rectangles whose
centers are the knots. We also quantize the kernel estimate.

The right number of quantization levels depends on the smoothness of the
estimate. We may choose the number of quantization levels by increasing the
number of levels until the number of local extremes of the quantized estimate
is not increasing. Note that the problem of the choice of the quantization lev-
els is related to the problem of choosing the levels for a contour plot of a two
dimensional kernel estimate.

In Figure [ we visualize kernel estimates. The estimates are based on the
same sample of 200 which was considered in Section Bl On the left hand side
we show perspective plots of the kernel estimates and on the right hand side
we show the corresponding volume plots, based on 80 levels and 642 gridpoints.
Bartlett-Epanechnikov product kernel is used in the estimates. Figure [ shows
barycenter plots for the three estimates.

The volume plot in Figure [ ¢) does not reveal all 27 local extremes, which
are visible in the barycenter plot of Figure B c¢). On the other hand, from the
volume plot one sees the importance of the modes in terms of the excess mass.

The algorithm described in Section E-4]is not feasible for kernel estimates since
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Figure 9: Tetrahedron with vertices my, my, ms, and my. Distance between
vertices is D.

the number of gridpoints needed to approximate accurately a kernel estimate is
huge in multivariate cases. Klemeld (2005) describes a dynamic programming
algorithm for finding the separated components of level sets of a kernel estimate.

4 Examples

We will give examples from estimation and visualization of mixtures of Gaussian
densities. We consider 3 and 4 dimensional mixtures whose components are close
to each other.

4.1 Three dimensional example

We consider an equal mixture of standard Gaussian densities. The means of the
components of the mixture lie on the vertices of a tetrahedron. We choose as
means

mi = D x(1/2,0,0),
my = D x(—1/2,0,0),
ms = D x(0,v3/2,0)
my = D x(0,1/(2V3),,/2/3).

Points m; lie on the vertices of a tetrahedron and the distance between vertices
is D. See Figure

When we choose D sufficiently small then two dimensional projections do not
reveal the modes of the density. In Figure [[] a)-c¢) we show marginal densities
on the three coordinate planes of R®> when D = 3. One can see that there are no
better projections than the coordinate planes. When the distance between the
components of the mixture is large, then the projection to x-y-plane reveals all 4
modes: in Figure [l d) we show the marginal density on x-y-plane when D = 4.

16



0 A

AR O

R A
RN

XK

:“\
LN R
«"‘{\\\\‘\‘\‘:\‘g“o’o""""‘

\\\‘\\\\“

I\

/ “’.’0""‘\
S “‘0 O
AR \\ ()
AR
AR
/,;"::.::\sxx‘“ 0 o “Q}“ i
e ,\g\s\:’t,o.::&:o:o:::‘\: i .“ R
R RRRRRRRRAREES 9::,,,"o,'..o“.\\t\\\?‘\\‘.b".%%m“
RO

N
RN |
SO A
.
R

!
AKX
\\‘\\\\\‘:\‘.‘.'0'0.2.‘ o

Figure 10: Marginal densities of a mixture of 4 standard Gaussian densities in
R3; a) x-y plane, D=3; b) x-z plane, D=3; c¢) y-z plane, D=3; d) x-y plane, D=4.

17



For the simulation example we choose distance between modes D = 3. When
the sample size is sufficiently large, then 3-dimensional histogram finds all 4
modes of the underlying density, even when marginal densities do not reveal the
modes.

In Figure[[dl we present a histogram, based on a sample of size 5000. We chose
9 bins for each direction. The mode labelled M1 has the largest excess mass.

The barycenter plots in Figure [[1l reveal that the locations of the modes of
the estimate are not too far from the locations of the modes of the true density.
In fact, the locations of the modes are

M1 = (=0.02,1.1,2.1) ~ my = (0,0.9,2.4),
M2 = (—0.02,3.2,0.2) ~ mz = (0,2.6,0),
M3 = (—1.0,0.04,0.2) ~ ms = (—1.5,0,0),
M4 = (1.0,0.04,0.2) ~ m; = (1.5,0,0).

By M1-M4 we denote the barycenters of the sets where the histogram estimate
achieves a local maximum.

4.2 Four dimensional example

We consider an equal mixture of standard Gaussian densities. The means of the
components of the mixture lie on the vertices of a pentahedron. We choose as
means

x (1/2,0,0,0),
= D x(—=1/2,0,0,0),
ms = D x(0,v3/2,0,0),
x (0,1/(2V/3),1/2/3,0),
x (0,1/(2v/3),1/(2v6), /15/24).

Points m; lie on the vertices of a pentahedron and the distance between vertices
is D. When we choose m; sufficiently close to each other, then two dimensional
projections do not reveal the modes of the density. In Figures [2 a)-f) we show
marginal densities on the six coordinate planes of R* of the equal mixture of
standard Gaussian densities, with D = 4. We denote coodinate directions by
(x,y,2,u). Even when the distance between components of the mixture is large,
there exists no projection to the coordinate planes that would reveal all 5 modes
at once.

For the simulation example we choose distance between modes D = 4 and
sample size 2000. We present in Figure a kernel estimate with h = 1 and
Bartlett-Epanechnikov product kernel. We quantized to 40 levels and evaluated
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Figure 11: Histogram with 9 bins based on a sample of 5000 from a mixture of
4 Gaussian densities in R3. Window a.1) shows volume plot, a.2) shows zoomed
volume plot, and b.1-3) show barycenter plots.
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Figure 12: Marginal densities of a mixture of 5 standard Gaussian densities in
R*, when D = 4; a) x-y plane; b) x-z plane; c¢) x-u plane; d) y-z plane; e) y-u
plane; f) z-u plane.

the estimate at 16* gridpoints. With only 16 gridpoints in each direction the
kernel estimator is still more accurate than the histogram estimator.
The locations of the modes of the estimate in Figure [[3 are

M1 =(0.2,0.7,0.9,3.1) ~ ms = (0,1.2,0.8,3.2),
M2 =(0.2,1.4,3.2,—0.3) ~ my = (0,1.2,3.3,0),
M3 =(2.2,0.4,0.2,—0.3) ~ m; = (2,0,0,0),

M4 = (0.2,3.4,-0.6,—0.3) ~ ms = (0,3.5,0,0),
M5 = (—1.8,0.02,0.2,0.4) ~ msy = (—2,0,0,0).

One can see that the locations of the modes of the estimate are not too far from
the locations of the modes of the true density.

5 Summary and further work

5.1 Summary

Studying level sets for a series of levels provides information on the shape of
a multivariate function. Level sets has been applied in density estimation and
mode detection in 3 and 4 dimensional cases by Scott (1992) and Hérdle and Scott
(1992), who present a sliding technique for visualizing 4 dimensional functions.
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They visualize 3D density contours as the fourth variable is changed over its
range.

Our aim is to apply level sets in arbitrary dimension with the help of level
set trees. Level set trees are complex objects which give an alternative way to
represent functions. This representation is however fruitful for visualizing many
features of functions. We are not able to make a single visualization which would
without loss of information visualize a multivariate function. Instead, we make
a number of visualizations and each plot visualizes one aspect or feature of the
original function. Our approach is an alternative to the approach of projecting the
data to a low dimensional space. Studying projections and marginal densities is
in many cases sufficient but projections may hide some high dimensional features.

In density estimation we are interested how the probability mass is distributed
over the d-dimensional Euclidean space. Local extremes of the density function
express concentration of the probability mass. We are interested both in visual-
izing the locations of these local extremes, and also in visualizing the size of the
probability mass associated with each local extreme. To achieve these aims we
have introduced the volume plot, which visualizes the amount of probability mass
associated with each local extreme, and the barycenter plot, which visualizes the
locations of these probability masses. The volume plot defines a one dimensional
transformation for multivariate densities, which is not any slice, conditional den-
sity, or marginal density of the original density.

5.2 Further work

In one and two dimensional cases the art of smoothing consists often in the
inspection of the changes of the estimate as the smoothing parameter of the
estimate changes. Formal tools to help this process has been given for example
by Minnotte and Scott (1993), Minnotte (1997), Chaudhuri and Marron (1999).
The graphical representations of level set trees may be utilized to extend versions
of these tools to higher than 2 dimensional cases.

We have applied only volumes and barycenters in this article. Other poten-
tially useful characteristics of sets include diameter, perimeter, radius (minimum,
maximum, average), and compactness (ratio of the perimeter to the volume).

It is also interesting to apply level sets to visualize other multivariate func-
tions than density functions. For example, it is important to detect modes from
regression functions. Barycenter plots may be applied to detect monotone be-
haviour of a function with respect to some variables, which is often of interest in
regression function estimation.

Cluster analysis. According to Hartigan (1975), page 205, clusters are regions
of high density separated from other such regions by regions of low density. Thus
clusters are separated subsets of some level set {x € R? : f(x) > a} of the
underlying density function f.
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Typical clustering algorithms include algorithms based on hierarchical trees
and the k-means algorithm. Note that the output of these algorithms is a par-
tition of the sample: they will not provide clusters defined as subsets of the
sample space. For some applications this is not sufficient and one needs addi-
tional analysis to identify the locations of the clusters of sample points. Another
problem with the k-means algorithm and hierarchical trees is that they require
prior knowledge of the number of clusters.

We may try to estimate clusters by constructing a nonparametric density esti-
mate and finding the separated subsets of a level set of the estimate corresponding
to some low level. Graphical representations of level set trees provide tools for
realizing such an approach to clustering. An advantage of cluster analysis based
on density estimation is that with this approach we may acquire lots of useful
information on the shape of the density function, and not just the clusters.
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