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Abstract

We consider estimation of a linear functional T (f) where f is an unknown func-

tion observed in Gaussian white noise. We find asymptotically sharp adaptive

estimators on various scales of smoothness classes in multidimensional situa-

tion. The results allow to evaluate explicitly the effect of dimension and to

treat general scales of classes. Furthermore, we establish a connection between

sharp adaptation and optimal recovery. Namely, we propose a scheme that re-

duces the construction of sharp adaptive estimators on a scale of functional

classes to a solution of the corresponding optimization problem.
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1 Introduction

Adaptation is now commonly considered as a crucial element of curve estimation pro-

cedures. The literature on adaptive estimation suggests various methods, starting

from classical cross-validation or Cp criterion and ending with more recent tech-

niques such as wavelet shrinkage or the method of Lepski. A more complete review

of the existing approaches and further references can be found in Donoho at al.

(1995), Jones, Marron and Sheather (1996), Lepski and Spokoiny (1997), Härdle et

al. (1998), Tsybakov (1998), Barron, Birgé and Massart (1999), Nemirovski (2000).

How to choose a method of adaptation which is optimal in a certain sense?

Comparing the rates of convergence does not suffice for this purpose. In fact, it

is proved in the literature that most of the adaptive estimates attain optimal rates

(exactly or up to a logarithmic factor), and thus the rate criterion does not allow to

distinguish between them. This suggests to study exact asymptotics of the estimation

error.

Let f : Rd → R be the unknown function to be estimated. Intuitively, the aim

of adaptation would be to select the estimator which has the smallest risk among all

estimators for every f . Unfortunately, this is not possible. We have either to restrict

the class of estimators, considering, for example, kernel, spline or orthogonal series

estimators, and to mimic the best estimator in this class for fixed f , or to restrict

the class of functions f (usually, assuming that f has some smoothness which is

unknown) and to adapt among all estimators, but in a minimax sense. Restricting

the class of estimators disagrees with our initial wish to seek optimality among all

estimators. To satisfy it, the approach starting from smoothness classes of f and

using the minimax seems more relevant. Note that, for curve estimation problems,

it is often not a big limitation to assume that f belongs to some class of functions

Fν, where ν is an unknown smoothness parameter.

There exist several results on exact asymptotics in minimax adaptation: Efroimovich

and Pinsker (1984), Gobubev and Nussbaum (1990), Nemirovski (2000), Cavalier and

Tsybakov (2000) (estimation of f in the L2 -norm), Lepski (1992b), Tsybakov (1998)

(estimation in sup-norm), Lepski and Spokoiny (1997), Tsybakov (1998), Lepski and

Levit (1998) (estimation at a fixed point). These papers consider the one-dimensional

case (d = 1). Recently some first results on multidimensional exact constants ap-
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peared: Lepski and Levit (1999) study the estimation of analytical functions in d

dimensions and Efromovich (2000) extends the L2-results of Efroimovich and Pinsker

(1984) to multivariate case.

We call the collection F = {Fν}ν∈B, where B is a given set of indices ν, the scale

of classes. A typical form of Fν is

Fν = Fs,L =
{
f : Rd → R

∣∣∣ ρs(f) ≤ L
}

(1)

where ν = (s, L), ρs(·) is a given functional, usually a semi-norm (for example, the

Hölder or Sobolev semi-norm), s > 0 is a smoothness parameter (for example, the

number of derivatives) and L > 0 is the radius of the ball Fν .

In this paper we consider the estimation of f at a fixed point of Rd, or, more

generally, the estimation of some linear functional T (f) with values in R. Ibragimov

and Hasminskii (1981, 1984), Stone (1980), Sacks and Ylvisaker (1981), Donoho

and Liu (1991), Donoho and Low (1992), Donoho (1994b) obtained optimal rates

of convergence and linear minimax estimates in this problem for various examples

of semi-norms ρs(·) and classes Fν . In particular, as noticed by Donoho and Low

(1992), the optimal rates can be expressed in terms of renormalization exponents

related to the functionals ρs and T . It is shown in these papers that the optimal rate

has the form εκ (where κ = κ(ρs, T ) > 0 is an exponent depending on ρs and T ) if

the observations Yε(t) follow the Gaussian white noise model:

dYε(t) = f(t)dt+ εdW (t), t ∈ Rd, (2)

where W is the standard Brownian sheet in Rd and 0 < ε < 1 is a small parameter.

The use of the Gaussian white noise model has recently become standard in the liter-

ature on nonparametric estimation: it approximates asymptotically (in the sense of

convergence of experiments) some common models with discrete observations, such

as nonparametric regression or density estimation [Brown and Low (1996a), Nuss-

baum (1996)]. In such an approximation ε ∼ 1/
√
n where n is the number of discrete

observations. Up to our knowledge, the equivalence results are now available only in

dimension d = 1. Also, the equivalence is valid only for smoothness s large enough.

Nevertheless, this does not restrict extension of our results to other nonparametric

models, since this can be done directly, without equivalence considerations. For ex-
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ample, results for density estimation similar to ours and obtained by a direct method

are actually available [see Butucea (2000)].

For an estimator Tε based on the observation Yε(t) consider the maximal risk

Rε,ν(Tε) = sup
f∈Fν

Ef (|Tε − T (f)|p)

where p > 0 and Ef denotes the expectation w.r.t. the distribution of the observa-

tions when the underlying function is f . For the adaptive setup, ν is unknown, and

the minimax approach consists in looking for estimators T ∗
ε such that the supremum

of the normalized risk supν∈B ϕ
−p
ε,νRε,ν(T

∗
ε ) is as small as possible, where ϕε,ν is the

rate of convergence. As shown by Lepski (1990, 1992a), Efromovich and Low (1994),

Brown and Low (1996b), the last expression does not tend to 0 asymptotically as

ε→ 0 if ϕε,ν equals the optimal rate εκ. The correct rate for adaptation deteriorates

to ϕε,ν = (ε
√

log(1/ε))κ, i.e. the best we can guarantee in terms of the rate is

lim sup
ε→0

sup
ν∈B

ϕ−p
ε,νRε,ν(T

∗
ε ) <∞,

except for the upper boundary of B where the normalization εκ can be maintained

[see Lepski (1992a), Tsybakov (1998)]. The results of Lepski (1990, 1992a), Brown

and Low (1996b) are proved for the case where Fν are Hölder classes of functions,

T (f) = f(0) and d = 1. Efromovich and Low (1994) considered more general linear

functionals and Tsybakov (1998) proved the result for the Sobolev classes and d = 1.

Following the scheme of Lepski (1992a) or of Tsybakov (1998), it is not difficult

to show that in the general situation with d ≥ 1 and Hölder or Sobolev classes of

functions the correct asymptotic normalization ϕε,ν in the risk supν∈B ϕ
−p
ε,νRε,ν(T

∗
ε )

is of the form (ε
√

log(1/ε))κ, up to a boundary effect.

Here we do not go into details of these results about the rates. For a more

comprehensive discussion, the definition of adaptive rate and the lower bounds see

Tsybakov (1998). Below we assume as given the normalization ϕε,ν = (ε
√

log(1/ε))κ

for the risk, where κ is the exponent of the optimal rate that is calculated as in

Ibragimov and Hasminskii (1984), Donoho and Liu (1991). Our aim is to find the

exact asymptotical constant cν in the expression for the minimax ”adaptive” risk

and to construct the adaptive estimator T ∗
ε that attains this constant.

Such an estimator T ∗
ε will be called sharp adaptive on the scale of classes {Fν}.

The examples of sharp adaptive estimators of functionals are known for the case
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where d = 1, T (f) = f(0). The first example has been given by Lepski and Spokoiny

(1997) who considered the Hölder scale of classes with smoothness 0 < s ≤ 2.

Tsybakov (1998) obtained sharp adaptive estimators for the Sobolev scale of classes

where s takes discrete values without upper restriction on s and with fixed L. His

setup is somewhat different from the one considered here and his results cannot be

formally deduced from ours. In the present paper we assume that s belongs to a

bounded interval: this allows, in particular, a unified treatment of the Hölder and

Sobolev cases (in the Hölder case, if s is large, we cannot guarantee the necessary

assumptions and the optimal solutions for the kernels are not explicitly known).

Also, the Gaussian model here differs from those in Lepski and Spokoiny (1997) and

Tsybakov (1998): we consider the observations on Rd, while in those papers the

observations are on [0, 1]. From the mathematical point of view, the difference is

not significant between considering functions on R and periodic functions on [0, 1]

(as in Tsybakov (1998)) or neglecting the boundary effects on [0, 1] (as in Lepski

and Spokoiny (1997)). However, working with the infinite interval of observations

leads to more transparent notation. In practice we always have finite intervals, but

if they are large enough they can be approximately considered as infinite. This is

commonly done in the literature on signal processing (cf. a discussion in Donoho

and Low (1992)). Lepski and Levit (1998, 1999) considered the Gaussian white

noise model on the infinite interval and obtained sharp adaptation results for the

case where Fν are classes of analytical or supersmooth functions.

Here we find sharp adaptive estimators of linear functionals for the general prob-

lem of dimension d ≥ 1, classes (1) with some general functional ρs(·) and both s

and L unknown, and a functional T satisfying some assumptions that are relevant

for the non-regular case where the ”
√
n-consistent” estimation is not possible . The

main examples are T (f) = f(0) or T (f) being a partial derivative of f at a point.

We consider a general framework that makes transparent the connection between

sharp adaptation and optimal estimation of linear functionals (optimal recovery).

An explicit scheme is proposed that reduces the construction of sharp adaptive esti-

mators to a solution of the corresponding optimal recovery (OR) problem. Donoho

(1994a,b) was the first to point out a connection between OR and nonparametric

statistics. He showed that the OR argument can be used to get exact asymptotics

of linear minimax risks in estimation problems. More recently Lepski and Tsybakov
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(2000) proved that by means of OR one can construct asymptotically sharp minimax

nonparametric tests. The present paper describes one more field of application of

OR: construction of sharp adaptive estimators. Our conclusion can be formulated

as follows: it is possible to construct sharp adaptive estimators of linear functionals

by action of the Lepski-type selection procedure (with properly chosen thresholds)

over families of linear estimates with optimal recovery kernels.

2 Assumptions and preliminaries

Let s > 0 and let ρs be a functional defined on a subset D of the space of all functions

f : Rd → R. Suppose in the sequel that D = {f : ρs(f) < ∞}. We assume the

following conditions on the functional ρs.

Assumption 1.

(i) The functional ρs is convex, nonnegative and symmetric, i.e. ρs(f) = ρs(−f),

and ρs(f) 6≡ 0,

(ii) ρs(af(b·)) = absρs(f(·)) for any a ≥ 0, b > 0, f ∈ D.

Furthermore, we assume that the functional T satisfies the following conditions.

Assumption 2.

(i) T is a linear functional on D.

(ii) There exists r ≥ 0 such that T (af(b ·)) = abrT (f(·)) for a ≥ 0, b > 0, f ∈ D.

(iii) The modulus of continuity is well-defined:

ωs,L(ε)
def
= sup {T (f) : ‖f‖2 ≤ ε, ρs(f) ≤ L} <∞

for all s > r, L > 0, ε > 0 where ‖ · ‖2 is the L2(R
d)-norm.

Assumptions 1(ii) and 2(ii) are usual renormalization assumptions (see Donoho

and Low (1992) for discussion and examples).
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As described by Donoho (1994a,b), Donoho and Liu (1991), Donoho and Low

(1992), the minimax estimation of functionals from random noisy data is closely

related to the deterministic problem of minimax optimal recovery that considers

estimation from observations in non-random noise. These papers show that, by

calibrating the algorithms of optimal recovery one can construct linear minimax

estimators for the statistical estimation of linear functionals and asymptotic minimax

estimators for the statistical estimation of functions with supremum loss. We refer

to these papers for a detailed discussion. Here we show that by calibrating the

algorithms of optimal recovery, one can construct a family of linear estimators such

that choosing one of these linear estimators with a certain data-based decision rule

will result in a sharp adaptive estimation procedure. Next we give a brief summary

of the results on optimal recovery that will be used below.

By the generalized Weierstrass theorem, under the Assumptions 1 and 2 there

exists a function gs,L,ε which attains the supremum of the modulus of continuity, i.e.

T (gs,L,ε) = ωs,L(ε) (3)

[cf. Gabushin (1970), Micchelli and Rivlin (1977), Arestov (1989)]. These authors

show that the extremal problem

maxT (f) subject to





‖f‖2 ≤ 1,

ρs(f) ≤ 1,
(4)

is related to the optimal recovery problem: find a function Ks such that

sup
ρs(f)≤1, ‖f−g‖2≤1

∣∣∣∣
∫
Ksg − T (f)

∣∣∣∣ = inf
K

sup
ρs(f)≤1, ‖f−g‖2≤1

∣∣∣∣
∫
Kg − T (f)

∣∣∣∣
def
= E(s). (5)

In particular, Theorems 6, 8 and 11 in Micchelli and Rivlin (1977) and Theorems 2.4 -

2.5 in Arestov (1989) show that under Assumptions 1 and 2 there exists Ks ∈ L2(R
d)

that satisfies (5) and, moreover,

E(s) = T (gs,1,1) = sup
ρs(f)≤1

∣∣∣∣
∫
Ksf − T (f)

∣∣∣∣+ ‖Ks‖2. (6)

The property (6) plays crucial role in our argument. In the sequel Ks denotes the

optimal recovery kernel, i.e. the function in L2(R
d) satisfying (6). Note that if
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T (f) = f(0) and 0 <
∫
gs,1,1 < ∞, the kernel Ks has a particular form Ks = K0

s

where

K0
s = gs,1,1/

∫
gs,1,1.

This can be shown in a simple way (see e.g. Lemma 1 of Lepski and Tsybakov

(2000)). For general functionals T similar condition usually holds:

Ks = Cgs,1,1 (7)

where the constant C > 0 depends only on s, r, d. In fact, Assumptions 1 - 2 and

the renormalization argument entail that ωs,L(ε) is of power law form: ωs,L(ε) =

ωs,1(1)L2(r+d)/(2s+d)εκ where

κ = κ(s) = 2(s− r)/(2s+ d).

Hence, as in Donoho (1994b), Donoho and Liu [1991, Section 4.3] and Donoho and

Low [1992, Section 8], one gets (7).

We assume that the observations Yε(t), t ∈ Rd, are obtained from the Gaus-

sian white noise model (2). As follows from Donoho and Liu (1991), Donoho and

Low (1992), Donoho (1994b), the linear minimax estimator of T (f) under the mean

squared risk on the class of functions Fs,L is the kernel estimator with properly

rescaled optimal recovery kernel Ks and the bandwidth

hl(s, L, ε) = (ε/L)2/(2s+d). (8)

The rate of convergence of the linear minimax estimator is respectively εκ.

Our definition of sharp adaptive estimator starts from the family of kernel esti-

mators with optimal kernels Ks, though with the bandwidths different from those of

the linear minimax case.

We suppose that the following continuity condition on the kernel holds.

Assumption 3.

The optimal recovery kernel Ks satisfies (7) and ‖Ks′ −Ks‖2 → 0, as s′ → s, for

any s > r.

Let the scale of classes {Fs,L}(s,L)∈B be defined by (1) with

B = {(s, L) : s∗ ≤ s ≤ s∗, L∗ ≤ L ≤ L∗}
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where r < s∗ < s∗ < ∞, 0 < L∗ < L∗ < ∞. This means that we are certain that

f ∈ Fs,L for some L ∈ [L∗, L
∗] and s ∈ [s∗, s

∗]. The values r, s∗, s
∗ are supposed to be

known but L∗ and L∗ can be unknown: we do not need L∗, L
∗ for the construction

of our sharp adaptive estimators.

Define the bias constant

bs,s′ = sup
ρs(f)≤1

∣∣∣∣
∫
Ks′f − T (f)

∣∣∣∣ .

The following boundedness and continuity condition on the bias constant will be

assumed.

Assumption 4.

(i) For any r < r′ < s∗ there exists a positive constant bmax(r
′, s∗) such that

bs,s′ ≤ bmax(r
′, s∗), ∀ r′ ≤ s′ ≤ s ≤ s∗.

(ii)

lim sup
δ→0

sup
s,s′∈[s∗,s∗]:|s−s′|≤δ

bs,s′

bs,s
≤ 1.

Clearly, the main interest of our construction is in the case where the solution

gs,L,ε and the kernel Ks can be expressed explicitly. In this case Assumptions 3 – 4

can be checked directly, see the examples in Section 5.

3 Results

For any h > 0 denote Ks,h(·) = h−d−rKs(·/h) where Ks is defined in Section 2.

Consider kernel estimators of the form
∫
Ks,h(t)dYε(t) where h is a suitably chosen

bandwidth. Denote

h(s, ε) = ε2/(2s+d), (9)

and introduce the ”effective noise level under adaptation”:

ε̃ = ε̃(s) = εdε(s) =
(
λ(s)ε2 log ε−1

)1/2
,
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where

dε(s) =
(
λ(s) log ε−1

)1/2
,

λ(s) = 2p(2r + d)
(

1

2s+ d
− 1

2s∗ + d

)
.

We use the bandwidth computed at the effective noise level:

h(s, ε̃(s)) =
(
λ(s)ε2 log ε−1

)1/(2s+d)
.

This bandwidth is by a logarithmic factor in order than the bandwidth (8) of linear

minimax estimate.

We will introduce a sufficiently fine grid on [s∗, s
∗] and a statistic ŝ having values

on this grid. To each point of the grid we assign a linear kernel estimator. The

statistic ŝ will choose one of these estimators. Namely, we consider the grid

S = {s1, . . . , sm} ,

where

r′ < s1 < · · · < sm < s∗

with a fixed r′ satisfying r < r′ ≤ s∗, and we assume that there exist k2 > k1 > 0

and γ1 ≥ γ > 1 such that

k1(log ε−1)−γ1 ≤ si+1 − si ≤ k2(log ε−1)−γ , i = 0, . . . , m− 1, (10)

where s0 = r′, sm − s∗ = o(1), as ε→ 0. Note that the same grid S can be used for

different values s∗, provided s∗ > r′. In this sense the exact knowledge of s∗ is not

required for the construction of the estimator.

For any s ∈ S introduce the linear kernel estimator of the functional T (f):

Ts,ε =
∫
Ks,h(s,ε̃(s))(t)dYε(t).

The sharp adaptive estimator has the form Tŝ,ε where ŝ is a suitably chosen

statistic. To define ŝ we follow the approach used in different statistical models

starting from the paper of Lepski (1990). That is, the statistic ŝ is defined as the

largest of those s-values in the grid for which the estimator Ts,ε does not differ

significantly from the estimators corresponding to the smaller s-values. We choose

ŝ = max {s ∈ S : |Ts,ε − Ts′,ε| ≤ η(s′) for all s′ ∈ S, s′ ≤ s}
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with the threshold

η(s) = dε(s) σs = ε̃(s)2(s−r)/(2s+d)‖Ks‖2,

where σs is the standard deviation of Ts,ε,

σs = ε‖Ks,h(s,ε̃(s))‖2 = εh−r−d/2(s, ε̃(s))‖Ks‖2. (11)

Finally, define the estimator of T (f) as

T ∗
ε = Tŝ,ε. (12)

The next theorem is the main result of this paper. It states that the estimator

T ∗
ε is sharp adaptive and that the exact asymptotical constant cν for the minimax

adaptive risk is given by the expression

cν = cν,s∗ = L(2r+d)/(2s+d)T (gs,1,1)
[
2p(2r + d)

(
1

2s+ d
− 1

2s∗ + d

)](s−r)/(2s+d)

. (13)

To formulate the theorem we introduce, for any ψ > 0, p > 0, the normalized risk:

Rε,ν(Tε, ψ) = sup
f∈Fν

Ef

(
ψ−p |Tε − T (f)|p

)

and denote

ψν = cνϕε,ν = cν
(
ε2 log ε−1

)(s−r)/(2s+d)
. (14)

(Recall that we defined ϕε,ν = (ε
√

log ε−1)κ and κ = 2(s − r)/(2s + d).) The

normalizing factor ψν may be expressed as the value of the modulus of continu-

ity at the effective noise level ε̃. Indeed, by standard renormalization argument,

gs,L,ε̃(·) = ags,1,1(b ·) where a = Lb−s and b = (L/ε̃)2/(2s+d). Thus,

ωs,L (ε̃) = T (gs,L,ε̃) = abrT (gs,1,1)

= ε̃2(s−r)/(2s+d)L(2r+d)/(2s+d)T (gs,1,1)

= cν
(
ε2 log ε−1

)(s−r)/(2s+d)
= ψν . (15)

Theorem 1 Let Assumptions 1-4 hold, let p > 0 and denote Bq = [s∗, q] × [L∗, L
∗],

where s∗ < q < s∗. Then the estimator T ∗
ε defined in (12) is sharp adaptive:

sup
s∗<q<s∗

lim sup
ε→0

sup
ν∈Bq

Rε,ν(T
∗
ε , ψν) ≤ 1, (16)
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and

sup
s∗<q<s∗

lim inf
ε→0

inf
Tε

sup
ν∈Bq

Rε,ν(Tε, ψν) ≥ 1. (17)

Here infTε
denotes the infimum over all estimators.

Proofs of Theorem 1 and of the further results are given in Section 7.

Remark 1. Since s and L are not fixed, it is more precise to call cν = cν,s∗ the

”optimal normalizing function” rather than the optimal constant. An insight on the

structure of this function has been first given by Lepski (1992a), Theorem 8, where

he shows that

cν,s∗ ≍
(

1

2s+ 1
− 1

2s∗ + 1

)(s−r)/(2s+1)

(he considers the case d = 1 and the Hölder scale of classes, but it is not hard to

extend his result to our multivariate setting). Here we specify the exact value of

cν,s∗ which contains, of course, the same factor, but also turns out to contain another

factor expressed in terms of optimal recovery solutions (cf. (13)).

For s = s∗ we have cν,s∗ = 0. Thus Rε,ν(T
∗
ε , ψν) is not defined for the single point

s = s∗. This explains why the set Bq appears in place of B in Theorem 1: indeed,

the difference between (16) – (17) and analogous expressions with limε→0 supν∈B is

really minor but we have to use the form (16) – (17) in order to exclude the point

s = s∗. It is possible to construct an adaptive estimator that has the property

given in Theorem 1 and attains for s = s∗ a faster rate, without the logarithmic

factor: ε2(s∗−r)/(2s∗+d) (cf. Lepski (1992a), Theorem 8). Such an estimator is defined

similarly to T ∗
ε , but with the enlarged grid {s1, . . . , sm, s

∗} and with Ts,ε replaced

by

T̃s,ε =






∫
Ks,h(s,ε̃(s))(t)dYε(t) for s = s1, . . . , sm,

∫
Ks,h(s,ε)(t)dYε(t) for s = s∗.

Also one should impose an assumption on the rate of approximation of s∗ by sm as

ε→ 0 . The effect of improving the rate at a single boundary point s∗ is discussed for

example by Lepski (1992a) and Tsybakov (1998). This issue is of minor importance,

although involving more technical details, and we do not pursue it here.

The estimator T ∗
ε depends on the value s∗ which is not always available. One can

propose a sub-optimal modification of T ∗
ε that does not depend on s∗. It is obtained
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by putting formally s∗ = ∞ in the definition for T ∗
ε . In other words, we replace in

all the formulas λ(s) by

λ̃(s) =
2p(2r + d)

2s+ d
,

and we set

c̃ν = L(2r+d)/(2s+d)T (gs,1,1)

(
2p(r + d)

2s+ d

)(s−r)/(2s+d)

,

ψ̃ν = c̃ν (ε2 log ε−1)
(s−r)/(2s+d)

. We also assume that the grid S = {s1, . . . , sm} is

extended to the right beyond s∗:

r′ < s1 < · · · < sm = smax

where smax > s∗ and si satisfy (10). Here smax is an arbitrary large fixed number.

Let T̃ε be the estimate defined as T ∗
ε with the change of λ(s) to λ̃(s) and with the

extended grid S as above. Note that T̃ε is completely data-driven: the dependence

on s∗ disappears.

Theorem 2 Let Assumptions 1-4 hold and let p > 0. Then

lim sup
ε→0

sup
ν∈B

Rε,ν(T̃ε, ψ̃ν) ≤ 1.

Proof of Theorem 2 is omitted: it follows the same lines as that of Theorem 1,

with a minor modification concerning the extension of the grid beyond s∗ (this is

done as in the proof of Theorem 3 below). Comparing with that proof, we observe

that Theorem 2 remains valid if one takes smax → ∞ as ε → 0, but not faster than

log(1/ε).

Note that in view of Theorems 1 and 2 the asymptotical risk of the estimator T̃ε

can be larger than that of T ∗
ε on any set Fs (with s∗ ≤ s < s∗) at most by a factor

of
c̃ν
cν

=

(
2s∗ + d

2(s∗ − s)

)(s−r)/(2s+d)

.

This factor is particularily close to 1 if s is fixed and s∗ gets large. Thus, for s∗ large

enough and fixed s the behaviour of T̃ε and T ∗
ε is similar, but T̃ε has an advantage

since it does not depend on s∗. Although, for s close to s∗ the estimator T̃ε is much

less efficient than T ∗
ε .
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A useful modification of Theorem 1 consists in constructing a grid on the values

of smoothing parameter h and not on the s-values as above. To get correspondence

with the s-grid satisfying (10), the h-grid should have a geometrical character. This

means that an ”economic” choice of h (among a logarithmic number of possible

candidates) is in fact sufficient to attain sharp asymptotic adaptivity: increasing

the cardinality of the grid or passing to the choice of h in a continuum of values

complicates the procedure but does not improve the result. We set h0 = h(r′, ε̃(r′))

and define the sequence {hi} by the recursion

hi+1 = hi(1 + α(hi)) (18)

where α(hi) is a slowly varying function of hi. It will be sufficient to consider

α(h) = (log(1/h))−γ0 (19)

where γ0 > 0 is a constant. Given the grid

H = {h1, h2, . . . , hm},

with m = max{i : hi < hmax}, hmax ≥ ε2/(2s∗+d), consider the bandwidth

ĥ = max{h ∈ H : |Tε(h) − Tε(h
′)| ≤ ηh′ , for all h′ ≤ h, h′ ∈ H}

where Tε(h) =
∫
Ks(h),h(t)dYε(t), and

ηh = εh−r−d/2

√

p(2r + d) log
hmax

h
‖Ks(h)‖2

with

s(h) =

(
log ε

log h
− d

2

)

.

Define

T ∗
ε = Tε(ĥ). (20)

We now state an analogue of Theorems 1 and 2 for the estimator (20).

Theorem 3 Let Assumptions 1-4 be satisfied, p > 0, and let T ∗
ε be defined in (20).

(i) If hmax = ε2/(2s∗+d) then (16) holds, i.e. the estimator (20) is sharp adaptive.
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(ii) If hmax = 1 then the estimator (20) satisfies

lim sup
ε→0

sup
ν∈B

Rε,ν(T
∗
ε , ψ̃ν) ≤ 1.

We observe that the result of Theorem 3 (ii) is robust to the choice of hmax.

Inspection of the proof shows that hmax = 1 can be replaced by hmax = h∗ for any

positive h∗, and other choices of hmax > ε2/(2s∗+d) are acceptable as well. We also

note that a special case of the above construction is given by Lepski and Spokoiny

(1997). They considered a grid on h-values defined in (18), (19) with γ0 = 1/4

and for the particular case of Hölder scale of classes with 0 < s ≤ 2, r = 0, d = 1.

Their Theorem 3.3 in the proper form follows from Theorem 3 modulo the fact that

their procedure is slightly different: it includes an additional factor (1+α(h)) in the

threshold ηh.

Remark 2. (Pointwise and spatial adaptivity.) Application of our adaptive

procedure to the particular functionals T (f) = f(x) for each point x of an interval

where f is defined gives an estimator of f on this interval. Therefore, a special case

of our results is sharp pointwise adaptivity for estimation of a whole function f on

an interval. Arguing as in Lepski, Mammen, and Spokoiny (1997), Goldenshluger

and Nemirovskii (1997) one can deduce spatial adaptivity of such an estimator of a

function from its pointwise adaptivity.

Remark 3. (Data-dependent kernels.) One of the most studied topics in non-

parametric curve estimation is the choice of the smoothing parameter in kernel es-

timation. We do not restrict ourselves to kernel estimators but find asymptotically

sharp adaptive estimator among all estimators. Remark that nevertheless this esti-

mator turns out to be a kernel one, with smoothing parameter selected in a data-

dependent way. What is more, our results suggest that, to attain optimality, not

only the smoothing parameter but also the kernel function of this estimator should

be chosen in a data-dependent way.

4 Other statistical models

It is possible to modify the proposed estimator for other types of observations than

the Gaussian white noise model. Consider some examples.

15



Density estimation. Let X1, . . . , Xn be i.i.d. observations with density f on Rd

and consider estimation of T (f) = f(x) for some x ∈ Rd. Construct a preliminary

estimator f̂n(x) > 0 for f(x) and consider the family of kernel estimators

Ts,n =
1

n

n∑

i=1

Ks,h(s,ε̃(s))(Xi − x),

where Ks, h and ε̃(s) are defined as above where one substitutes ε = (f̂n(x)/n)1/2.

The adaptive procedure is defined as in Section 3: it is a data-driven selection of

an appropriate member of this family. But again, in the definition of the threshold

η(s) of the adaptive procedure one should set ε = (f̂n(x)/n)1/2. Sharp adaptation

properties of this adaptive density estimator on the Sobolev scale of classes are proved

by Butucea (2000). Butucea (2001) presents a large simulation study showing a

successful behavior of the adaptive procedure for different densities f . In particular,

the procedure is quite robust to the choice of the preliminary estimator f̂n.

Nonparametric regression. Consider the nonparametric regression model

Yi = f(Xi) + ξi, i = 1, . . . , n,

where Xi = i/n− 1/2 are equispaced regressors on the interval [−1/2, 1/2], f is an

unknown regression function and ξi are i.i.d. random variables such that E(ξi) = 0,

E(ξ2
i ) = σ2 > 0, satisfying some additional moment conditions. Let again T (f) =

f(x). An adaptive procedure analogous to ours can be suggested similar to the

density case. Construct a preliminary estimator σ̂ of σ, and consider the family of

linear kernel estimators

Ts,n =
1

n

n∑

i=1

YiKs,h(s,ε̃(s))(Xi − x),

where Ks, h and ε̃ are defined as in Section 3, with ε = σ̂/
√
n. Finally, apply the

thresholding procedures of Section 3 to get ŝ (or ĥ), with the above definition of

ε used to compute the threshold η(s). The adaptive estimator is then Tŝ,n. We

conjecture that Tŝ,n has sharp optimality properties, as in Theorems 1 - 3.

5 Examples

In this section we give examples of classes Fν (respectively, functionals ρs) that

satisfy the assumptions of Section 2 and allow explicit construction of sharp adaptive

16



estimators.

1. Sobolev classes. Let β > d/2 and denote s = β − d/2. Define the Sobolev

semi-norm ρs by

ρ2
s(f) = (2π)d

∫

Rd
‖ω‖2β

∣∣∣f̂(ω)
∣∣∣
2
dω

where the Fourier transform of a function f ∈ L1(R
d) is

f̂(ω) =
1

(2π)d

∫

Rd
f(x) exp(−ixTω)dx

and ‖ · ‖ denotes the Euclidean norm in Rd. Note that if β is an integer,

ρ2
s(f) =

∑

|α|=β

∫

Rd

∣∣∣f (α)
∣∣∣
2

where

f (α)(x) = i|α|
∫

Rd
ωαf̂(ω) exp(ixTω) dω

and α = (α1, . . . , αd) is a multi-index, |α| = α1 + . . . + αd, ω
α = ωα1

1 · · ·ωαd

d , for

ω = (ω1, . . . , ωd).

Consider the estimation of the functional T (f) = f (α0)(0) where α0 is a multi-

index, |α0| = r and r ≥ 0 is an integer, s > r . The kernel Ks is then obtained as a

renormalized version of the basic kernel

K̃s(x) = (2π)−dir
∫

Rd
ωα0(1 + ‖ω‖2β)−1 exp(ixTω)dω. (21)

Note that K̃s is always real-valued: it is the directional derivative corresponding to

the multi-index α0 of the function whose Fourier transform is (2π)−d(1 + ‖ω‖2β)−1.

Introduce the constant

C∗ =

[
1

2β
B

(

1 +
2r + d

2β
, 1 − 2r + d

2β

)

(2π)−d
∫

Sd

ξ2α0dµ(ξ)

]1/2

where Sd = {x ∈ Rd : ‖x‖ = 1} for d = 2, 3, . . ., S1 = [−1, 1], µ is the Lebesgue

measure of Sd so that µ(Sd) = 2πd/2/Γ(d/2), d = 1, 2, . . ., and B(·, ·) denotes the

beta-function.

Proposition 1 Let r ≥ 0 be an integer and s > r. Then for the Sobolev semi-norm

ρs and T (f) = f (α0)(0), |α0| = r, the extremal function gs,1,1 is given by gs,1,1(x) =
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(−1)raK̃s(bx) where K̃s is defined in (21), a = C−1
∗ b−s and b =

(
2(s−r)
2r+d

)1/(2s+d)
.

Furthermore,

Ks(x) = br+dK̃s(bx),

‖Ks‖2 = C∗

(
2(s− r)

2r + d

)(s+r+d)/(2s+d)

,

T (gs,1,1) = C∗

(
2r + d

2(s− r)

)(s−r)/(2s+d)
2s+ d

2r + d
.

For the one-dimensional case (d = 1) the extremal function gs,1,1 was found by

Taikov (1968).

The kernel K̃s can be expressed in terms of the Bessel functions. Thus, if r = 0,

we have

K̃s(x) = (2π)−d/2‖x‖1−d/2
∫ ∞

0

td/2

1 + t2β
J(d−1)/2(t‖x‖)dt

where Jn is the ordinary Bessel function of order n. For r 6= 0 the kernel K̃s is the

corresponding directional derivative of the right hand side of the last equality.

Proposition 2 Let ρs be the Sobolev semi-norm, and let T (f) be as in Proposition 1.

Then Assumptions 1-4 are satisfied with any s∗, s
∗, r′ such that r < r′ ≤ s∗ < s∗ <∞,

r′ > (s∗ − r − d)/2.

2. Taylor and Hölder classes. The Taylor classes are defined by (1) with

ρs(f) = sup
x 6=0

‖x‖−s

∣∣∣∣∣∣
f(x) −

⌈s−1⌉∑

i=0

∑

|α|=i

xα

α!
f (α)(0)

∣∣∣∣∣∣
(22)

where s > 0, f (α)(0) is the partial derivative corresponding to the multi-index α and

α! = α1! · · ·αd!. Consider the estimation of the functional T (f) = f(0) when f is in a

Taylor class. This problem was studied in a non-adaptive setting of linear minimax

estimation by Legostaeva and Shiryaev (1971), Sacks and Ylvisaker (1981). The

extremal function gs,1,1 of the maximization problem (4) is given by the following

proposition which is a multivariate generalization of their results. This function is a

renormalized version of the basic kernel

K̃s(x) = (1 − ‖x‖s) I(‖x‖ ≤ 1). (23)
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Proposition 3 Let r = 0, 0 < s ≤ 2. Then, for ρs defined in (22) and T (f) = f(0)

the extremal function gs,1,1 is given by gs,1,1(x) = aK̃s(bx) where K̃s is defined in

(23), a = b−s, and

b =

(
2s2µ(Sd)

(2s+ d)(s+ d)d

)1/(2s+d)

.

Furthermore,

Ks(x) =

(
µ(Sd)s

(s+ d)d

)−2s/(2s+d) (
2s

2s+ d

)d/(2s+d)

K̃s(bx),

‖Ks‖2 =
(s+ d)d

µ(Sd)s

(
2s2µ(Sd)

(2s+ d)(s+ d)d

)(s+d)/(2s+d)

,

T (gs,1,1) =

(
(2s+ d)(s+ d)d

2s2µ(Sd)

)s/(2s+d)

.

For 0 < s ≤ 1 the Hölder semi-norm is defined by

ρs(f) = sup
x,y∈Rd,x 6=y

‖x‖−s |f(x) − f(y)| (24)

and the Hölder classes are defined by (1) with ρs as in (24).

Proposition 4 The result of Proposition 3 remains valid if ρs is the Hölder semi-

norm and 0 < s ≤ 1.

Proposition 5 Let T (f) = f(0). Then Assumptions 1 - 4 are satisfied with any

0 < s∗ < s∗ ≤ 2 for the Taylor classes and with any 0 < s∗ < s∗ ≤ 1 for the Hölder

classes.

The Hölder semi-norm can be also defined for s > 1. However, explicit expressions

for the solution gs,1,1 and the kernel Ks are not generally known for s > 1, even in

the dimension d = 1. This does not allow to construct sharp adaptive estimators on

the Hölder scale with s∗ > 1. Thus, for d = 1, s > 1 the Hölder semi-norm is

ρs(f) = sup
x,y∈R,x 6=y

|f (l)(x) − f (l)(y)|
|x− y|s−l

where l = ⌊s⌋. Explicit solutions of the extremal problem (4) with this semi-norm

are available only for 0 < s ≤ 1 and s = 2 [see Fuller (1961), Gabushin (1968),

Korostelev (1994), Leonov (1997, 1999), Zhao (1997)].
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6 Lemmas

The following lemma gives a bound for the bias of a kernel estimator.

Lemma 1 Let h > 0 and s′, s > r. Then under Assumptions 1 and 2,

sup
f∈Fs,L

|EfTs′,ε − T (f)| ≤ Lhs−rbs,s′.

Proof. Using Assumptions 1 and 2, we have

sup
f∈Fs,L

∣∣∣∣Ef

∫
Ks′,hdYε − T (f)

∣∣∣∣ = sup
ρs(f)≤L

∣∣∣∣
∫
Ks′,hf − T (f)

∣∣∣∣

= sup
ρs(f)≤L

∣∣∣∣
∫
Ks′(x)h

−rf(hx)dx− T (f)
∣∣∣∣

= Lhs−r sup
ρs(f)≤L

∣∣∣∣∣

∫
Ks′(x)

f(hx)

Lhs
dx− T

(
f(h ·)
Lhs

)∣∣∣∣∣

= Lhs−r sup
ρs(f)≤1

∣∣∣∣
∫
Ks′f − T (f)

∣∣∣∣

since {
f(h ·)
Lhs

: ρs(f) ≤ L

}

= {f : ρs(f) ≤ 1} .

2

Recall that hl(s, L, ε) = (ε/L)2/(2s+d). Define the bias term:

B(s, L, ε) = Lhs−r
l (s, L, ε)bs,s

and the standard deviation term:

R(s, L, ε) = εh
−r−d/2
l (s, L, ε)‖Ks‖2.

Lemma 2 Suppose that Assumptions 1 and 2 hold and let gs,L,ε be defined by (3),

ε > 0, L > 0, s > r . Then

(i) ‖gs,L,ε‖2 = ε,

(ii) if ρs(g) ≤ L and T (g) = T (gs,L,ε), then
∫
ggs,L,ε ≥ ‖gs,L,ε‖2

2,

(iii) ψν = B(s, L, ε̃(s)) +R(s, L, ε̃(s)), where ψν is defined by (14).
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Proof. Assertion (i) means that the solution gs,L,ε is attained at the boundary

of the set of restrictions, while (ii) follows from the usual duality argument (see

Gabushin (1970), Micchelli and Rivlin (1977), Arestov (1989)). An elementary proof

of (i) and (ii) for the case T (f) = f(0) is given in Lepski and Tsybakov (2000). It

can be easily extended to our general case. Let us prove (iii). In view of (6),

T (gs,1,1) = bs,s + ‖Ks‖2. (25)

Now, by standard renormalization argument, gs,L,ε(x) = ags,1,1(bx) where

a = Lb−s = ε2s/(2s+d)Ld/(2s+d), b = (L/ε)2/(2s+d) = h−1
l (s, L, ε).

Thus,

abr = Lhs−r
l (s, L, ε) = εh

−r−d/2
l (s, L, ε),

and, by (25),

T (gs,L,ε) = abrT (gs,1,1) = B(s, L, ε) +R(s, L, ε).

This and (15) yield (iii). 2

For s > s′ > 0 define

dε(s
′, s) =

[
2p(κ(s) − κ(s′)) log ε−1

]1/2

=
[
2p(2r + d)

(
1

2s′ + d
− 1

2s+ d

)
log ε−1

]1/2

. (26)

Lemma 3 Let Assumptions 1 - 4 hold. Let s, s′ ∈ [r′, q], r < r′ < q, s′ < s,

L ∈ [L∗, L
∗], and denote ν = (s, L). Then there exist positive constants D1, . . . , D5

(that can depend only on s∗, s
∗, L∗, L

∗, r, q, d, p) such that

ψs′,L

ψν
≤ D1 exp

{
1

2p
d2

ε(s
′, s)

}

, (27)

ψs′,L

ψν

≥ D2

(
ε2 log

1

ε

)(κ(s′)−κ(s))/2

, (28)

h(s, ε̃(s))

h(s′, ε̃(s′))
≥ D3 exp

{
2

(2s∗ + d)2
(s− s′) log ε−1

}

, (29)

and

D4 ≤
ψs,L

η(s)
≤ D5. (30)
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Proof. From (15) we have ψs,L = ε̃2(s−r)/(2s+d)L(2r+d)/(2s+d)T (gs,1,1) where ε̃ =

εdε(s, s
∗). Thus,

ψs′,L

ψν
= exp

{
1

2p
d2

ε(s
′, s)

}
d2(s′−r)/(2s′+d)

ε (s′, s∗)

d
2(s−r)/(2s+d)
ε (s, s∗)

T (gs′,1,1)

T (gs,1,1)
L

2r+d

2s′+d
− 2r+d

2s+d .

Note that ‖Ks‖2 > 0 for every s, since otherwise ‖gs,1,1‖2 = 0 (by (7)) which contra-

dicts Lemma 2 (i). Also, by Assumption 3, ‖Ks‖2 is a continuous function of s on

the interval [r′, s∗] for r′ > r. Hence

inf
s∈[r′,s∗]

‖Ks‖2 > 0, sup
s∈[r′,s∗]

‖Ks‖2 <∞. (31)

Combining (31) with (25) and taking into account Assumption 4(i) we get

inf
s∈[r′,s∗]

T (gs,1,1) > 0, sup
s∈[r′,s∗]

T (gs,1,1) <∞. (32)

Now, for s0 < s1,

d2
ε(s0, s1) =

4p(2r + d)

(2s0 + d)(2s1 + d)
(s1 − s0) log ε−1 (33)

and thus, for s ∈ [r′, q],

4p(2r + d)

(2s∗ + d)2
(s∗ − q) log ε−1 ≤ d2

ε(s, s
∗) ≤ 4p

2r + d
(s∗ − r) log ε−1.

Therefore,

D6

(
log ε−1

)(κ(s′)−κ(s))/2 ≤ d2(s′−r)/(2s′+d)
ε (s′, s∗)

d
2(s−r)/(2s+d)
ε (s, s∗)

≤ D7

(
log ε−1

)(κ(s′)−κ(s))/2

for D6, D7 > 0. Observing that (κ(s′) − κ(s))/2 < 0 and using (32) we obtain (27)

and (28). To prove the bound (29) it is enough to note that

h(s, ε̃(s))

h(s′, ε̃(s′))
= exp

{
4(s− s′)

(2s+ d)(2s′ + d)

(
log ε−1 − 1

2
log log ε−1

)}
λ(s)1/(2s+d)

λ(s′)1/(2s′+d)
. (34)

The bounds (30) follow from the equality

ψs,L

η(s)
= L(2r+d)/(2s+d)T (gs,1,1)

‖Ks‖2

in view of (31) - (32). 2

We need some exponential bounds for the stochastic part of the estimator. Define

Zs = ε
∫
Ks,h(s,ε̃(s))(t)dW (t). (35)
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Lemma 4 Let σs be as defined in (11). Then for u > 0, p ≥ 0,

E [|Zs|p I(|Zs| ≥ u)] ≤ D(p) (σp
s + up) exp

{

− u2

2σ2
s

}

.

where D(p) > 0 is a constant depending only on p.

Proof of this lemma is straightforward since Zs ∼ N (0, σ2
s).

7 Proofs of the results

In the following we denote C,C ′, C1, C2, . . . positive constants that can depend only

on s∗, s
∗, L∗, L

∗, r, q, d, p. These constants may be different in different occasions.

Proof of the upper bound in Theorem 1.

Here we prove the bound (16). Consider ν = (s, L) ∈ Bq and define s− = s−(s)

by

s− = s− log log log(1/ε)

log(1/ε)
.

We have

sup
f∈Fν

Ef

(
ψ−p

ν |T ∗
ε − T (f)|p

)
= R−

ε,ν +R+
ε,ν

where

R−
ε,ν = sup

f∈Fν

Ef

(
ψ−p

ν |T ∗
ε − T (f)|p I

(
ŝ < s−

))
,

R+
ε,ν = sup

f∈Fν

Ef

(
ψ−p

ν |T ∗
ε − T (f)|p I

(
ŝ ≥ s−

))
.

To show (16), we will prove that

lim
ε→0

sup
ν∈Bq

R−
ε,ν = 0 (36)

and

lim sup
ε→0

sup
ν∈Bq

R+
ε,ν ≤ 1. (37)

Proof of (36). Let s ∈ [s∗, q], s
′ ∈ S, s′ < s−, L ∈ [L∗, L

∗]. Let f ∈ Fν,

ν = (s, L). Then for sufficiently small ε, using Lemma 1, (29) and the fact that

s′ < s, we get

|EfTs′,ε − T (f)| ≤ Lhs−r(s′, ε̃(s′))bs,s′ ≤ Lhs−r(s, ε̃(s))bs,s′. (38)
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By definition,

hs−r(s, ε̃(s)) = ε̃κ(s)(s, ε̃(s)). (39)

where κ(s) = 2(s − r)/(2s + d). Comparing this to (15) and using the inequality

bs,s′ ≤ bmax(r
′, s∗) ( Assumption 4(i)), we get

Lhs−r(s, ε̃(s))bs,s′ ≤ C1ψν . (40)

Then

|Ts′,ε − T (f)| ≤ |EfTs′,ε − T (f)| + |Zs′| ≤ C1ψν + |Zs′|

where Zs′ is defined in (35) as a stochastic error of the kernel estimator. Using this

we find

R−
ε,ν ≤

∑

s′∈S,s′<s−

sup
f∈Fν

Ef

(
ψ−p

ν |Ts′,ε − T (f)|p I (ŝ = s′)
)
≤ g1(ν) + g2(ν)

where

g1(ν) = C
∑

s′∈S,s′<s−

sup
f∈Fν

Pf (ŝ = s′)
(
1 + ψ−1

ν τ(s′)
)p

(41)

and

g2(ν) = C
∑

s′∈S,s′<s−

E
[(

1 + ψ−1
ν |Zs′|

)p
I (|Zs′| ≥ τ(s′))

]
(42)

with

τ(s′) = σs′

[
dε(s

′, s) +
(
log ε−1

)1/4
]

where σs′ is defined in (11) and dε(s
′, s) is defined in (26).

Let us prove that the probability of underestimating largely the value of s by the

statistic ŝ is small, uniformly over f ∈ Fν.

Lemma 5 Let s ∈ [s∗, q], s
′ ∈ S, s′ < s−, L ∈ [L∗, L

∗] and ν = (s, L). Then for

every δ > 0 there exists ε0 = ε0(δ) > 0 independent of s, s′, L and such that for all

0 < ε < ε0 we have

sup
f∈Fν

Pf (ŝ = s′) ≤ Cm exp
{
−1

2
d2

ε(s
′, s∗)(1 − δ)

}
.
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Proof. Since Card(S) = m, we have

sup
f∈Fν

Pf (ŝ = s′) ≤
∑

s′′∈S,s′′≤s′
sup
f∈Fν

Pf

(∣∣∣Ts̄′,ε − Ts′′,ε

∣∣∣ > η(s′′)
)

≤ m max
s′′∈S,s′′≤s′

sup
f∈Fν

Pf

(∣∣∣Ts̄′,ε − Ts′′,ε

∣∣∣ > η(s′′)
)

(43)

where s̄′ = s̄′(s′) is the smallest element of S greater than s′. Let f ∈ Fν. Arguing

as in (38) and (40), and using (28), for sufficiently small ε we get

∣∣∣EfTs̄′,ε − T (f)
∣∣∣+ |EfTs′′,ε − T (f)| ≤ C1ψν ≤ C1γεψs′′,L

where

γε = γε(s, s
′′) = D−1

2

(
ε2 log

1

ε

)(κ(s)−κ(s′′))/2

≤ D−1
2 exp {−C(κ(s) − κ(s′′)) log(1/ε)}

≤ D−1
2 exp

{
−C(κ(s) − κ(s−)) log(1/ε)

}
≤ D−1

2 exp {−C ′ log log log(1/ε)} .

Note that γε(s, s
′′) → 0 as ε→ 0 uniformly in s, s′′ ∈ [r′, q].

Using (30) we obtain ψs′′,L ≤ D5η(s
′′) and thus

∣∣∣Ts̄′,ε − Ts′′,ε

∣∣∣ ≤
∣∣∣EfTs̄′,ε − T (f)

∣∣∣+ |EfTs′′,ε − T (f)| + |Zs̄′ − Zs′′|
≤ C3γεη(s

′′) + |Zs̄′ − Zs′′ | .

Hence, for sufficiently small ε,

Pf

(∣∣∣Ts̄′,ε − Ts′′,ε

∣∣∣ > η(s′′)
)
≤ Pf (|Zs̄′ − Zs′′| > η(s′′)(1 − C3γε)) . (44)

Denote h0 = h(s′′, ε̃(s′′)), h1 = h(s̄′, ε̃(s̄′)), K̄0 = Ks′′ , K̄1 = Ks̄′, and, as usually,

K̄i,hi
= h−r−d

i K̄i(·/hi). Now Zs̄′ − Zs′′ ∼ N (0, ε2A2) where

A =
∥∥∥K̄0,h0

− K̄1,h1

∥∥∥
2
≤
∥∥∥K̄0,h0

− K̄0,h1

∥∥∥
2
+
∥∥∥K̄0,h1

− K̄1,h1

∥∥∥
2

def
= A1 + A2.

Now

A2
1 = h−2r−d

0

∫ 

K̄0(x) −
(
h0

h1

)r+d

K̄0

(
h0

h1

x

)


2

dx

= h−2r−d
0




∫
K̄2

0 +

(
h0

h1

)2r+d ∫
K̄2

0 − 2

(
h0

h1

)r+d ∫
K̄0(x)K̄0

(
h0

h1

x

)

dx



 .

25



Denote

g̃(x) =

(
h0

h1

)−r

gs′′,1,1

(
h0

h1

x

)

.

Then, because h0 < h1,

ρs′′(g̃) =

(
h0

h1

)s′′−r

ρs′′(gs′′,1,1) ≤ 1

and T (g̃) = T (gs′′,1,1). Lemma 2 (ii) gives

∫
gs′′,1,1g̃ ≥

∫
g2

s′′,1,1

and therefore, by (7),

(
h0

h1

)−r ∫
K̄0(x)K̄0

(
h0

h1
x

)

dx ≥
∫
K̄2

0 .

Thus

A2
1 ≤ h−2r−d

0



1 −
(
h0

h1

)2r+d



∫
K̄2

0 ≤ h−2r−d
0

∫
K̄2

0 . (45)

Also,

A2
2 = h−2r−d

1

∥∥∥K̄0 − K̄1

∥∥∥
2

2
= h−2r−d

0

∥∥∥K̄0

∥∥∥
2

2
γ′ε (46)

where

γ′ε = γ′ε(s̄
′, s′′) =

(
h0

h1

)2r+d
∥∥∥K̄0 − K̄1

∥∥∥
2

2∥∥∥K̄0

∥∥∥
2

2

−→ 0

as ε→ 0. Indeed, to prove this consider the two cases: (i) s̄′−s′′ ≥ (log ε−1)−1/2 and

(ii) 0 < s̄′−s′′ < (log ε−1)−1/2. If (i) holds then, by (29), h0/h1 ≤ D−1
3 exp(−C√log ε−1),

and, using (31), we get γ′ε ≤ C exp(−C√log ε−1). If (ii) holds, then (29) and the in-

equality s̄′ > s′′ entail h0/h1 ≤ C, while
∥∥∥K̄0 − K̄1

∥∥∥
2
≤ Ω(s̄′ − s′′) ≤ Ω((log ε−1)−1/2)

where Ω(δ) = sup{‖Ks −Ks′‖2 : |s− s′| ≤ δ, s, s′ ∈ [r′, s∗]}. Note that Ω(δ) → 0,

as δ → 0, by the uniform continuity of the function F (s, s′) = ‖Ks −Ks′‖2 on

[r′, s∗]× [r′, s∗] which follows from Assumption 3. Thus, in both cases (i) and (ii) we

have γ′ε(s̄
′, s′′) → 0 as ε→ 0, uniformly in s̄′, s′′ ∈ [r′, s∗].

From (45) and (46) it follows that for sufficiently small ε,

ε2A2 ≤ ε2h−2r−d(s′′, ε̃(s′′))‖Ks′′‖2
2(1 + γ′ε) = σ2

s′′(1 + γ′ε).
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Now, for sufficiently small ε,

η2(s′′)

ε2A2
≥ η2(s′′)

σ2
s′′(1 + γ′ε)

=
d2

ε(s
′′, s∗)

1 + γ′ε
≥ d2

ε(s
′, s∗)

1 + γ′ε
.

Thus, using Lemma 4 we get

Pf (|Zs̄′ − Zs′′ | > η(s′′)(1 − C3γε)) ≤ C4 exp
{
− 1

2ε2A2
η2(s′′)(1 − C3γε)

2
}

≤ C4 exp
{
−1

2
d2

ε(s
′, s∗)(1 − C3γε)

2(1 + γ′ε)
−1
}
.

Comparing this to (43) and (44) we get the lemma. 2

Lemma 6 Let g1 be defined in (41). Then,

lim
ε→0

sup
ν∈Bq

g1(ν) = 0.

Proof. Let s ∈ [s∗, q], s
′ ∈ S, s′ < s−, L ∈ [L∗, L

∗], ν = (s, L). By definitions

(see also (33)),

τ(s′)

η(s′)
=
dε(s

′, s) + (log ε−1)
1/4

dε(s′, s∗)
≤ C1.

Next, by (30),
η(s′)

ψν
≤ C2

ψs′,L

ψν

Combining the two previous inequalities and using (27), we get

τ(s′)

ψν
≤ C3

ψs′,L

ψν
≤ C4 exp

{
1

2p
d2

ε(s
′, s)

}

. (47)

Using this and Lemma 5, we find

g1(ν) ≤ C5

∑

s′∈S,s′<s−

sup
f∈Fν

Pf (ŝ = s′)

(
τ(s′)

ψν

)p

≤ C6 m
∑

s′∈S,s′<s−

[
exp

{
1

2
d2

ε(s
′, s)

}
exp

{
−1

2
d2

ε(s
′, s∗)(1 − δ)

}]

≤ C7 m
2 exp

{
−c(δ) log ε−1

}

where

c(δ) = p(2r + d)

(
1

2s+ d
− δ

2r + d
− 1 − δ

2s∗ + d

)

.
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Choose δ = (s∗−q)(2r+d)
2(s∗−r)(2q+d)

. Then c(δ) ≥ C8 > 0. Moreover, in view of (10),

m = O([log(1/ε)]γ1), ε → 0, (48)

and the lemma follows. 2

Lemma 7 Let g2 be defined in (42). Then,

lim
ε→0

sup
ν∈Bq

g2(ν) = 0.

Proof. Let s ∈ [s∗, q], s
′ ∈ S, s′ < s−, L ∈ [L∗, L

∗], ν = (s, L). Now,

τ 2(s′)

σ2
s′

=
[
dε(s

′, s) +
(
log ε−1

)1/4
]2

≥
(
log ε−1

)1/2
.

This, together with Lemma 4 and (47), (48) yields

g2(ν) ≤ C1

∑

s′∈S,s′<s−

[
1 + ψ−p

ν (σp
s′ + τp(s′))

]
exp

{

−τ
2(s′)

2σ2
s′

}

≤ C2m exp
{
−1

2

(
log ε−1

)1/2
}
−→ 0

uniformly in ν ∈ Bq, as ε→ 0. 2

Lemmas 6 and 7 imply (36).

Proof of (37). Let s ∈ [s∗, q], L ∈ [L∗, L
∗], ν = (s, L). Let s̄ = s̄(s) be defined

by

s̄ = s− (2s+ d) logL

2 log(1/ε) − log log(1/ε) + 2 logL
.

In other words, s̄ is chosen so that

(
L−2ε2 log ε−1

)1/(2s+d)
=
(
ε2 log ε−1

)1/(2s̄+d)
. (49)

Let s+ ∈ S be the largest grid point ≤ s̄. Denote S1 = S1(s) = {s′ ∈ S : s− ≤ s′ ≤
s+} and S2 = S2(s) = {s′ ∈ S : s+ < s′ ≤ q}. Assume that ε is small enough, so

that s− < s+. We have

R+
ε,ν = sup

f∈Fν

Ef

(
ψ−p

ν |T ∗
ε − T (f)|p I (ŝ ∈ S1 ∪ S2)

)
.
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Let s′ ∈ S1 and f ∈ Fν . Using successively Lemma 1, the fact that s′ ≤ s̄ and

(49) we get

|EfTs′,ε − T (f)| ≤ Lhs−r(s′, ε̃(s′))bs,s′

= Lλ(s′)(s−r)/(2s′+d)
(
ε2 log ε−1

)(s−r)/(2s′+d)
bs,s′

≤ Lλ(s′)(s−r)/(2s′+d)
(
ε2 log ε−1

)(s−r)/(2s̄+d)
bs,s′

= Lλ(s′)(s−r)/(2s′+d)
(
L−2ε2 log ε−1

)(s−r)/(2s+d)
bs,s′

= Λ(s, s′)Lhs−r
l (s, L, ε̃(s))bs,s′ (50)

where Λ(s, s′) = λ(s′)(s−r)/(2s′+d)λ(s)−(s−r)/(2s+d). Note that

|s− s′| ≤ C log log log(1/ε)

log(1/ε)
, ∀s′ ∈ S1. (51)

This and the uniform continuity of Λ(s, s′) in s, s′ ∈ [s∗, q] yields that Λ(s, s′) ≤
1+γε1. (Here and later we denote γεi, i = 1, 2, . . . the functions of ε that can depend

only on s∗, s
∗, L∗, L

∗, r, q, d, p and such that limε→0 γεi = 0.) Next, using Assumption

4(ii) and (51), for every s′ ∈ S1, s ∈ [s∗, s
∗], we get bs,s′ ≤ bs,s(1+γε2). These remarks,

(50) and Lemma 2 (iii), yield

|EfTs′,ε − T (f)| ≤ Lhs−r
l (s, L, ε̃(s))bs,s(1 + γε3)

= B(s, L, ε̃(s))(1 + γε3) ≤ ψν(1 + γε3), ∀s′ ∈ S1. (52)

From (27) and (51) we have ψs′,L/ψν ≤ (log log(1/ε))C1, ∀s′ ∈ S1. This and (30)

entail

η(s′) ≤ D−1
4 ψs′,L ≤ C2(log log(1/ε))C1ψν , ∀s′ ∈ S1,

and

σs′

ψν

≤ C3(log log(1/ε))C1
σs′

η(s′)
=
C3(log log(1/ε))C1

dε(s′, s∗)

≤ C3(log log(1/ε))C1

dε(q, s∗)
≤ C4

log1/4(1/ε)
, ∀s′ ∈ S1. (53)

Note also that, since s+ ≤ s̄, the argument similar to (50), (52) and Assumption 3

yield

η(s+) =
(
λ(s+)ε2 log ε−1

)(s+−r)/(2s++d) ‖Ks+‖2
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≤ λ(s+)(s+−r)/(2s++d)(ε2 log ε−1)(s̄−r)/(2s̄+d)‖Ks+‖2(1 + γε4)

= λ(s+)(s+−r)/(2s++d)
√
ε2 log ε−1

(
ε2 log ε−1

L2

)−(r+d/2)/(2s+d)

‖Ks+‖2(1 + γε4)

≤ ε̃(s)h
−r−d/2
l (s, L, ε̃(s))‖Ks‖2(1 + γε5)

= R(s, L, ε̃(s))(1 + γε5). (54)

(For the first inequality in this display we used the fact that, by (10), |s̄ − s+| ≤
k2[log(1/ε)]−γ, γ > 1, and thus (ε2 log ε−1)(s+−r)/(2s++d)−(s̄−r)/(2s̄+d) ≤ (1 + γε4). )

Now we are ready for the main argument of the proof. Let first ŝ = s′ ∈ S1.

Then, in view of (52),

|T ∗
ε − T (f)| = |Ts′,ε − T (f)| ≤ |EfTs′,ε − T (f)| + |Zs′| ≤ ψν(1 + γε3) + |Zs′| . (55)

Next, let ŝ = s′ ∈ S2. Then, using successively the definition of ŝ, (52), (54) and

Lemma 2 (iii), we get

|T ∗
ε − T (f)| ≤ |Ts′,ε − Ts+,ε| + |Ts+,ε − T (f)|

≤ η(s+) + |EfTs+,ε − T (f)| + |Zs+|
≤ R(s, L, ε̃(s))(1 + γε5) +B(s, L, ε̃(s))(1 + γε3) + |Zs+ |
≤ ψν(1 + γε6) + |Zs+| .

This and (55) entail

Ef

(
ψ−p

ν |T ∗
ε − T (f)|p I (ŝ ∈ S1 ∪ S2)

)
≤

∑

s′∈S1

Ef

((
1 + γε3 + ψ−1

ν |Zs′|
)p
I (ŝ = s′)

)

+
∑

s′∈S2

Ef

((
1 + γε6 + ψ−1

ν |Zs+ |
)p
I (ŝ = s′)

)
. (56)

Applying Lemma 4 and (53) we get, for any s′ ∈ S1,

Ef

((
1 + γε3 + ψ−1

ν |Zs′|
)p
I (ŝ = s′)

)
≤
(
1 + γε3 +

√
σs′ψ−1

ν

)p

Pf (ŝ = s′)

+ Ef

((
1 + γε3 + ψ−1

ν |Zs′|
)p
I
(
|Zs′| ≥

√
σs′ψν

))

≤
(
1 + γε3 +

√
σs′ψ−1

ν

)p

Pf (ŝ = s′)

+ C5

[
Pf

(
|Zs′| ≥

√
σs′ψν

)
+ ψ−p

ν Ef

(
|Zs′|pI

(
|Zs′| ≥

√
σs′ψν

))]
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≤
(
1 + γε3 +

√
σs′ψ−1

ν

)p

Pf (ŝ = s′) + C6

[
1 + ψ−p

ν

(
(σs′ψν)

p/2 + σp
s′

)]
exp

{

− ψν

2σs′

}

≤
(
1 + γε3 + C

1/2
4 (log(1/ε))−1/8

)p
Pf (ŝ = s′) + C7 exp

{

− log1/4(1/ε)

2C4

}

.

Since s+ ∈ S1, analogous bound holds for Ef

(
(1 + γε6 + ψ−1

ν |Zs+|)p
I (ŝ = s′)

)
. We

conclude therefore that

R+
ε,ν = sup

f∈Fν

Ef

(
ψ−p

ν |T ∗
ε − T (f)|p I (ŝ ∈ S1 ∪ S2)

)

≤


1 + γε7 +
C

1/2
4

log1/8(1/ε)




p

sup
f∈Fν

Pf (ŝ ∈ S1 ∪ S2) + 2C7m exp

{

− log1/4(1/ε)

2C4

}

(57)

where γε7 = max{γε3, γε6}. It remains to note that (37) follows from (57) and (48).

2

Proof of the lower bound in Theorem 1.

Here we prove the bound (17). The proof consists in reducing the problem to

getting a lower bound on the risk of two hypotheses f = f0 and f = f1, which are

chosen to be distant enough. In fact, f1 will be chosen on the ”boundary” of our

scale of classes. Let L ∈ [L∗, L
∗], ν ′ = (s∗, L) and ν ′′ = (q, L). Consider the functions

f0 ≡ 0, f1 = (1 − δ)gs∗,L,ε̃(s∗)

where 0 < δ < 1/2 and ε̃(s∗) = εdε(s∗, s
∗). Obviously, f0 ∈ Fq,L. Furthermore,

ρs∗(f1) = (1 − δ)ρs∗(gs∗,L,ε̃(s∗)) ≤ (1 − δ)L and thus f1 ∈ Fs∗,L. From equation (15),

T (f1) = (1 − δ)ψν′ . Also, T (f0) = 0. Thus, for any estimator Tε,

|Tε − T (fi)| = ψν′ D
(
(1 − δ)−1ψ−1

ν′ Tε, i
)

i = 0, 1,

where D(u, v) = (1 − δ)|u− v|, u, v ∈ R. Denoting Q = ψν′/ψν′′ and Ei = Efi
, we

get

inf
Tε

sup
ν∈Bq

sup
f∈Fν

Ef

(
ψ−p

ν |Tε − T (f)|p
)

≥ inf
Tε

max
{
E0

(
ψ−p

ν′′ |Tε − T (f0)|p
)
, E1

(
ψ−p

ν′ |Tε − T (f1)|p
)}

= inf
Tε

max {QpE0D
p(Tε, 0), E1D

p(Tε, 1)} .

Denote for brevity Pi = Pfi
, i = 0, 1. We apply now the following lemma, which is

a special case of Theorem 6 (i) in Tsybakov (1998) adapted to the present notation.
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Lemma 8 Let Q > 0, τ > 0, 0 < δ < 1/2, 0 < α < 1 be fixed and let D : R ×R →
[0,∞) be a distance such that

D(0, 1) ≥ 1 − δ.

Suppose that

P1

(
dP0

dP1
≥ τ

)

≥ 1 − α.

Then, for p > 0,

inf
Tε

max {QpE0D
p(Tε, 0), E1D

p(Tε, 1)} ≥ (1 − α)(1 − 2δ)pτ(Qδ)p

(1 − 2δ)p + τ(Qδ)p

where the infimum is taken over all estimators.

Let us check the assumptions of Lemma 8. Clearly, the assumptionD(0, 1) ≥ 1−δ
is satisfied for our definition of D(·, ·). Next, by Lemma 2 (i), ‖f1‖2

2 = (1− δ)2ε̃2(s∗).

Put

τ = exp

{

−1 − δ

2
d2

ε(s∗, s
∗)

}

.

Then

P1

(
dP0

dP1
≥ τ

)

= P
(
exp

{
ε−1‖f1‖2ξ − ε−2‖f1‖2

2/2
}
≥ τ

)
= 1 − Φ(lε)

where ξ ∼ N (0, 1), Φ(·) is a standard normal c.d.f. and

lε =
ε

‖f1‖2

(
log τ + ε−2‖f1‖2

2/2
)

= −δ
2
dε(s∗, s

∗) −→ −∞, ε → 0.

Hence, we can use Lemma 8 with the choice α = Φ(lε) which results in

inf
Tε

max {QpE0D
p(Tε, 0), E1D

p(Tε, 1)} ≥ (1 − Φ(lε))(1 − 2δ)pτ(Qδ)p

(1 − 2δ)p + τ(Qδ)p
. (58)

Here, in view of (14) and (33),

τQp = exp

{

−1 − δ

2
d2

ε(s∗, s
∗)

}(
ψν′

ψν′′

)p

≥ exp

{
2p(2r + d)

(2s∗ + d)(2s∗ + d)
[q − s∗ + δ(s∗ − s∗)] log ε−1

}

exp

{

− p(2r + d)

(2s∗ + d)(2q + d)
log log ε−1

}(
cν′

cν′′

)p

.
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Choose δ = (1− δ1)
s∗−q
s∗−s∗

+ δ1, where 0 < δ1 < 1/2, and consider only q that is close

enough to s∗, so that δ < 1/2. Then q − s∗ + δ(s∗ − s∗) > 0, and τQp → ∞, as

ε → 0. Since also lε → −∞, we conclude that the RHS of (58) tends to (1 − 2δ)p,

as ε→ 0. Taking the limit of (1− 2δ)p, as q → s∗, and using the fact that δ1 can be

chosen arbitrarily small, we get

lim
q→s∗

lim inf
ε→0

inf
Tε

sup
ν∈Bq

Rε,ν(Tε, ψν) ≥ 1.

2

Proof of Theorem 3. We start with the proof of Theorem 3 (i). Note that the

function

F (s)
def
=
(
max{λ(s), λ(

s∗ + q

2
)}ε2 log ε−1

)1/(2s+d)

is a continuous function of s on the interval [r′, s∗], and F (r′) = h(r′, ε̃(r′)) ≤ hi <

hmax = ε2/(2s∗+d) < F (s∗) for any i ∈ {1, . . . , m} and ε small enough. Hence for

every i ∈ {1, . . . , m} there exists at least one si ∈ [r′, s∗] such that

hi =
(
max{λ(si), λ(

s∗ + q

2
)}ε2 log ε−1

)1/(2si+d)

. (59)

Fix a sequence S = {s1, s2, . . . , sm} where si is a solution of (59). Using (18), (19)

it is easy to check that si defined by (59) satisfies (10) with γ1 = γ = 1 + γ0, and

hi = h(si, ε̃(si)), ∀si ≤ (s∗ + q)/2.

Therefore, we can apply the argument as in the proof of Theorem 1 for this particular

grid S. Some modifications of the proof are needed here since, unlike the case of

Theorem 1, the kernel and the threshold are defined with s(hi) in place of si. These

modifications are easy to establish if one notes that

|si − s(hi)| ≤
C log log(1/ε)
√

log(1/ε)
, ∀si ≤ (s∗ + q)/2. (60)

In fact, Assumption 3 and (60) entail

∣∣∣∣∣
ηhi

η(si)
− 1

∣∣∣∣∣ ≤ γε8, ∀si ≤ (s∗ + q)/2, (61)
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and, in view of (60) and Assumption 4,

bs,s(hi) ≤ bs,si
(1 + γε9) ≤ bmax(r

′, s∗)(1 + γε9), ∀ s, si ∈ [r′, q], si ≤ s. (62)

Using (60) - (62), the proof of (36) is almost the same as in Theorem 1. For the

proof of (37) we mention only the modifications in the key relations (50) and (54).

Instead of (50) we now obtain (with the notation s′ = si):

|EfTε(hi) − T (f)| ≤ Lhs−r
i bs,s(hi) = Lhs−r(si, ε̃(si))bs,s(hi)

where, by (51), |si − s| ≤ C log log log(1/ε)/ log(1/ε). This and (60), together with

Assumption 4 (ii), yield bs,s(hi) ≤ bs,s(1 + γε10). Other elements of (50) remain as in

the proof of Theorem 1. Turning to (54), we have to evaluate now ηh+ in place of

η(s+), where h+ = h(s+, ε̃(s+)). By virtue of (61), the only difference from the case

of Theorem 1 appears in the inclusion of the extra factor (1 + γε8).

Consider now the proof of Theorem 3 (ii). We have F (r′) = h(r′, ε̃(r′)) ≤ hi <

hmax = 1 = lims→∞ F (s). Hence, the solutions si exist, as above, but we get an

additional set of gridpoints that extends to the right beyond s∗:

S3 = {si : si > (s∗ + q)/2} .

We can apply the argument as in the proof of Theorem 3 (i) with a modification as

to address the set S3 and the choice hmax = 1. The latter is equivalent to putting

s∗ = ∞, and all the calculations in the proof of Theorems 1 and Theorem 3 (i)

remain valid with this modification if ψν is replaced by ψ̃ν . Inclusion of the set S3

leads to a modification only in the proof of (37). In fact,

R+
ε,ν = sup

f∈Fν

Ef

(
ψ−p

ν |T ∗
ε − T (f)|p I (ŝ ∈ S1 ∪ S2 ∪ S3)

)

and the inclusion of S3 results in the consideration of the third component of R+
ε,ν,

namely

R++
ε,ν = sup

f∈Fν

Ef

(
ψ−p

ν |T ∗
ε − T (f)|p I (ŝ ∈ S3)

)
.

We treat this component similarily to (56) (we have the same expression with S3

instead of S2). Hence

R++
ε,ν ≤ sup

f∈Fν

∑

s′∈S3

Ef

((
1 + γε8 + ψ−1

ν |Zs+|
)p
I (ŝ = s′)

)
,
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and acting as in the calculation following the formula (56), we get instead of (57)

R+
ε,ν ≤



1 + γε7 +
C

1/2
4

log1/8(1/ε)




p

sup
f∈Fν

Pf (ŝ ∈ S1 ∪ S2 ∪ S3)+2C6m exp

{

− log1/4(1/ε)

2C4

}

and we conclude the proof by noting that m = Card(S) ≤ C (log(1/ε))1+γ0 . 2

Proof of Proposition 1. Note that

‖K̃s‖2
2 = (2π)d‖ ˆ̃Ks‖2

2 = (2π)−d
∫

Rd

ω2α0

(1 + ‖ω‖2β)2
dω

=
1

2β
B

(
2r + d

2β
, 2 − 2r + d

2β

)

(2π)−d
∫

Sd

ξ2α0dµ(ξ),

and

ρ2
s(K̃s) = (2π)d

∫

Rd
‖ω‖2β

∣∣∣∣
ˆ̃Ks(ω)

∣∣∣∣
2

dω = (2π)−d
∫

Rd

ω2α0‖ω‖2β

(1 + ‖ω‖2β)2
dω

=
1

2β
B

(

1 +
2r + d

2β
, 1 − 2r + d

2β

)

(2π)−d
∫

Sd

ξ2α0dµ(ξ) = C2
∗ .

Since the beta-function satisfies B(c, d) = B(c−1, d+1)(c−1)/d, ∀ c > 1, d > 0,

it follows that

‖K̃s‖2
2 =

2(s− r)

2r + d
ρ2

s(K̃s),

and thus

b =

(
‖K̃s‖2

ρs(K̃s)

)2/(2s+d)

. (63)

Now,

(−1)rT (K̃s) = (−i)r
∫
ωα0 ˆ̃Ks(ω)dω = (2π)−d

∫

Rd

ω2α0

1 + ‖ω‖2β
dω = ‖K̃s‖2

2 + ρ2
s(K̃s)

and hence, using (63), we get

T (gs,1,1(·)) = (−1)raT (K̃s(b ·)) = (−1)rabrT (K̃s)

=

(
ρs(K̃s)

‖K̃s‖2

)2(s−r)/(2s+d)

ρs(K̃s)
−1
(
‖K̃s‖2

2 + ρ2
s(K̃s)

)

= C∗

(
2r + d

2(s− r)

)(s−r)/(2s+d)
2s+ d

2r + d
. (64)

Now,

‖Ks‖2 = br+d/2‖K̃s‖2. (65)

To evaluate the bias constant we use the following lemma.
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Lemma 9 Let the assumptions of Proposition 1 be satisfied, and let r < r′ < s∗,

r′ ≤ s, s′ ≤ s∗, β = s+ d/2, β ′ = s′ + d/2, b′ =
(

2(s′−r)
2r+d

)1/(2s′+d)
. Then

bs,s′ ≤ (b′)r−s

[

(2π)−d
∫

Rd

ω2α0‖ω‖4β′−2β

(1 + ‖ω‖2β′)2
dω

]1/2

provided the last integral is finite.

Proof. We have K̂s′(ω) = (2π)−dirωα0(1 + ‖ω/b′‖2β′

)−1. Hence, by the Cauchy

inequality,

bs,s′ = sup
ρs(f)≤1

∣∣∣∣
∫
Ks′f − T (f)

∣∣∣∣ = sup
ρs(f)≤1

∣∣∣∣
∫

Rd
f̂(ω)

(
(2π)dK̂s′(ω) − irωα0

)
dω

∣∣∣∣

= sup
ρs(f)≤1

∣∣∣∣∣

∫

Rd
f̂(ω)irωα0

(
‖ω/b′‖2β′

1 + ‖ω/b′‖2β′

)

dω

∣∣∣∣∣

≤ (b′)r−s sup
ρs(f)≤1

[
(2π)d

∫

Rd
‖ω‖2β

∣∣∣f̂(ω)
∣∣∣
2
dω
]1/2

[

(2π)−d
∫

Rd

ω2α0‖ω‖4β′−2β

(1 + ‖ω‖2β′)2
dω

]1/2

.

Using the definition of ρs for the Sobolev classes, we get the lemma. 2

It follows from Lemma 9 with s = s′ that bs,s ≤ ρs(K̃s)b
r−s. Moreover,

bs,s = ρs(K̃s)b
r−s. (66)

Indeed, the function f∗ with the Fourier transform

f̂∗(ω) = (2π)−dρs(K̃s)
−1b−r−s−d irωα0

1 + ‖ω/b‖2β

satisfies ρs(f∗) = 1 and

∣∣∣∣
∫
Ksf∗ − T (f∗)

∣∣∣∣ =

∣∣∣∣∣

∫

Rd
f̂∗(ω)irωα0

(
‖ω/b‖2β

1 + ‖ω/b‖2β

)

dω

∣∣∣∣∣ = ρs(K̃s)b
r−s.

Combining (64) - (66), and using (63), we get (6). This proves the proposition. 2

Proof of Proposition 2. Assumptions 1 - 3 are straightforward to verify. We

check only Assumption 4. For s, s′ ∈ [r′, s∗] and β = s+d/2, β ′ = s′ +d/2 using the

inequality r′ > (s∗ − r − d)/2 assumed in Proposition 2, we obtain β ′ ≥ r′ + d/2 >

(s∗ − r)/2 ≥ (s− r)/2 = (β − r)/2 − d/4. Thus

∫

Rd

ω2α0‖ω‖4β′−2β

(1 + ‖ω‖2β′)2
dω ≤

∫

Rd

‖ω‖4β′−2β+2r

(1 + ‖ω‖2β′)2
dω = µ(Sd)

∫ ∞

0

t4β′−2β+2r+d−1

(1 + t2β′)2
dt
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≤ µ(Sd)
(∫ 1

0
t4β′−2β+2r+d−1dt+

∫ ∞

1
td−1−2β+2rdt

)

≤ µ(Sd)

[
1

4r′ − 2(s∗ − r − d)
+

1

2(r′ − r)

]

where for the last inequality we used that β, β ′ > r′ + d/2. This and Lemma 9 yield

Assumption 4(i). Next, Assumption 4(ii) follows from (66), the continuity of the

beta-function and the fact that (by Lemma 9)

bs,s′ ≤ (b′)r−s

[
1

2β ′
B

(

1 +
2r + d+ 2(β ′ − β)

2β ′
, 1 − 2r + d+ 2(β ′ − β)

2β ′

)]1/2

×
[
(2π)−d

∫

Sd

ξ2α0dµ(ξ)
]1/2

.

2

Proof of Propositions 3 and 4. Note that, for K̃s defined in (23),

∫
‖x‖sK̃s(x)dx+ ‖K̃s‖2

2 =
∫
K̃s.

Now, gs,1,1(·) = aK̃s(b ·), where b = ‖K̃s‖2/(2s+d)
2 . Let

Ks(x) =
[∫

gs,1,1

]−1

gs,1,1(x) =
[∫

K̃s

]−1

bdK̃s(bx).

Then

∫
‖x‖sKs(x)dx+ ‖Ks‖2 =

(
b−s

∫
‖x‖sK̃s(x)dx+ bd/2‖K̃s‖2

)
/
∫
K̃s

= ‖K̃s‖−2s/(2s+d)
2

(∫
‖x‖sK̃s(x)dx+ ‖K̃s‖2

2

)
/
∫
K̃s

= ‖K̃s‖−2s/(2s+d)
2 .

For f ∈ {g : ‖g‖2 ≤ 1, ρs(g) ≤ 1} we get

|f(0)| ≤
∣∣∣∣
∫
Ksf − f(0)

∣∣∣∣+
∣∣∣∣
∫
Ksf

∣∣∣∣ ≤
∣∣∣∣
∫

(f(x) − f(0))Ks(x)dx
∣∣∣∣+ ‖f‖2‖Ks‖2

≤
∫

‖x‖sKs(x)dx+ ‖Ks‖2 = ‖K̃s‖−2s/(2s+d)
2 .

On the other hand, this upper bound is achieved by gs,1,1 because

gs,1,1(0) = aK̃s(0) = a = ‖K̃s‖−2s/(2s+d)
2 .
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Propositions 3 and 4 follow from these remarks and the equations

∫
K̃s =

µ(Sd)s

(s+ d)d
, ‖K̃s‖2

2 =
2s2µ(Sd)

(2s+ d)(s+ d)d
.

2

Proof of Proposition 5. Assumptions 1 - 3 are straightforward. To check

Assumption 4, it suffices to remark that in this case bs,s′ ≤ ∫ ‖x‖sKs′(x)dx and

bs,s =
∫ ‖x‖sKs(x)dx. 2
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