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Abstract

Bin smoothers, or regressograms, are piecewise constant regression function

estimators whose values are averages of the response variable over the sets
of a partition of the space of the explanatory variables. First we review results

about bin smoothers whose partition is regular, giving conditions for consis-
tency and for achieving the optimal rate of convergence. Second we review

representative results about bin smoothers whose partition is irregular, again

giving conditions for consistency and for achieving the optimal rate of conver-
gence. Third we give an exposition of recursive partitioning, main examples

being greedy partitions and the CART methodology.

Bin Smoothing and Regressograms

Bin smoothers might be the simplest nonparametric estimators of a regression

function. A bin smoother is a piecewise constant regression function estima-

tor. The X-observation space is covered by disjoint bins and the value of a
bin smoother in a bin is the average of the Y -values for the X-values inside

that bin. The bins are typically rectangles but they can also be hexagons, for
example. Bin smoothers are also called “regressograms”. The name “regres-

sogram” was coined by Tukey [1961]. The name is related to “histogram”, which

denotes a piecewise constant estimator of a density function, analogous to a
regressogram. Below we use the term regressogram.

We define a regression function f : Rd → R as the conditional expectation
f(x) = E(Y |X = x), where Y ∈ R is the response variable and X ∈ R

d is

the vector of explanatory variables. The regression function is estimated us-

ing data (X1, Y1), . . . , (Xn, Yn), which is a sequence of identically distributed
random vectors, each vector having the same distribution as (X,Y ). Regres-

sograms can also be applied in the case of a fixed design regression, where

the regression function is the function f : Rd → R in the model Yi = f(Xi)+ ǫi,
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where ǫi ∈ R are identically distributed error terms with Eǫi = 0 and Xi ∈ R
d

are fixed design points for i = 1, . . . , n.

A regressogram is completely determined by defining a partition of the X-

space. We discuss only partitions made of rectangles. We distinguish be-

tween regular and irregular partitions. In the one dimensional case a regular
partition is a collection of intervals of length h and an irregular partition is a

collection of intervals of differing lengths. In the multivariate case we can dis-
tinguish between isotropic and anisotropic regular partitions. An isotropic reg-

ular partition is a partition where all rectangles have the same side lengths h
and thus the partition is a collection of cubes of volume hd (cubic partition). An
anisotropic regular partition is a partition where the side lengths of the rectan-

gles are the same in one direction but differ across dimensions, having side

lengths h1, . . . , hd and volumes h1 · · ·hd. In the multivariate case an irregular
partition consists of rectangles, where each rectangle can have a different vol-

ume and shape. Figure 1 shows two irregular partitions. Panel (a) shows a
dyadic partition (a partition that is obtained by midpoint splits) and panel (b)

shows a partition that is obtained by allowing splits on a finer grid (a partition

that is obtained with CART methodology).
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Figure 1: Irregular partitions; (a) a dyadic partition and (b) a CART partition.

Regular partitions depend on the data through the smoothing parameter h, or in
the anisotropic case through smoothing parameters h1, . . . , hd. The smoothing

parameters can be chosen by cross validation or a plug-in method, for example.

Irregular partitions depend more heavily on the data, because the shapes and
volumes of the sets of the partition are chosen using data. We discuss cases

where the partitions are chosen using penalized empirical risk minimization.

We start the article with the definition of a regressogram. After that, we give
consistency and rate of convergence results for regular partitions, following
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Stone [1977] and Györfi et al. [2002]. Next, results concerning irregular par-

titions are given. Consistency results are taken from Nobel [1996] and Györfi

et al. [2002]. Rate of convergence results for irregular partitions are taken in the
one dimensional case from Mammen and van de Geer [1997] and in the two

dimensional case from Donoho [1997]. Finally, recursive partitioning schemes

are discussed: a greedy partitioning is explained and CART approach to parti-
tion generation is introduced following Breiman et al. [1984].

Definition of a Regressogram

A regressogram, based on data (X1, Y1), . . . , (Xn, Yn), is determined by a collection

A1, . . . , AN ⊂ R
d of sets such that they are disjoint and their union covers the ob-

served explanatory variables:

1. Ai ∩ Aj = ∅, when i 6= j,

2. {X1, . . . , Xn} ⊂ UN
j=1Aj .

Now the regressogram is defined as

f̂n(x) = ŶAj
, if x ∈ Aj ,

where ŶAj
is the average of those response variables whose corresponding explanatory

variable is in Aj . We can write, using the notation IA(x) = 1 if x ∈ A and IA(x) = 0
if x /∈ A,

ŶA =
1

nA

n
∑

i=1

Yi IA(Xi), (1)

where nA is the number of explanatory variables inside A:

nA =

n
∑

i=1

IA(Xi).

We can write the definition of a regressogram compactly by

f̂n(x,P) =

N
∑

j=1

ŶAj
IAj

(x), x ∈ R
d, (2)

where we have also made the dependence of the regressogram on the partition P =
{A1, . . . , AN} explicit. Changing the order of summation in (2) we get

f̂n(x) =
N
∑

j=1

(

1

nAj

n
∑

i=1

Yi IAj
(Xi)

)

IAj
(x) =

n
∑

i=1

pi(x)Yi,
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where

pi(x) =

N
∑

j=1

1

nAj

IAj
(Xi)IAj

(x) =
1

nAx

IAx
(Xi), (3)

and Ax ∈ {A1, . . . , AN} is such that x ∈ Ax.1 Thus the regressogram belongs to the

class of local averaging estimators, that have the form

f̂n(x) =

n
∑

i=1

pi(x)Yi,

where pi(x) = pi(x,X1, . . . , Xn) ≥ 0 and
∑n

i=1 pi(x) = 1. The weights pi(x) of

a local averaging estimator should be such that the weight pi(x) is large when Xi is

close to x and the weight pi(x) is small when Xi is far away from x.

Regular Partitions

In the one dimensional a regular partition is a collection of intervals of length h. In

the multivariate case a regular partition is a collection of cubes of volume hd (isotropic

case) or a rectangle partition with side lengths h1, . . . , hd (anisotropic case). First

we give conditions for consistency and then conditions that guarantee that the rate of

convergence is optimal.

Consistency

We present a consistency theorem which implies that a sufficient condition for the weak

universal consistency of a regressogram is

lim
n→∞

hn = 0, lim
n→∞

nhd
n = ∞,

when the regressogram has a cubic partition with the side lengths hn for the cubes. A

sequence of regression function estimates {f̂n} is called weakly consistent for a certain

distribution of (X,Y ) with regression function f : Rd → R, if

lim
n→∞

E

∫

(

f̂n(x)− f(x)
)2

µ(dx) = 0,

where µ is the distribution of X . A sequence of regression function estimates {fn}
is called weakly universally consistent if it is weakly consistent for all distributions of

(X,Y ) with EY 2 < ∞.

The following theorem was proved in Györfi et al. [2002, Th. 4.2, p. 60] as a corollary

of the consistency theorem of Stone [1977]. The theorem gives sufficient conditions for

the weak universal consistency of regressograms. The first condition is a bias condition,

1By symmetry we can as well write pi(x) = IAXi
(x)/nAXi

.
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and it requires that the bins of the underlying partition shrink to zero inside a bounded

set, so the estimate is local. The second condition is a variance condition, and it requires

that the number of bins inside a bounded set is small with respect to the sample size n,

which implies that with a large probability each cell contains many data points.

The theorem considers a sequence of partitions indexed with the sample size, and for

sample size n we denote the sets of the partition by An,1, An,2, . . .

Theorem 1 Let (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed. If

for each sphere S centered at the origin

lim
n→∞

max
j:An,j∩S 6=∅

diam(An,j) = 0

and

lim
n→∞

#{j : An,j ∩ S} 6= ∅}

n
= 0,

then the regressogram is weakly universally consistent.2

The consistency theorem gives a mathematical interpretation to the phenomenon that

choosing a too small bin width for the regressogram leads to an estimate with small

bias but large variance (small bins do not contain enough observations) and a too large

bin width leads to an estimate with small variance but large bias (large bins do not

allow an accurate reproduction of the regression function).

Rates of Convergence

It can be proved that a regressogram is not only consistent estimator but that its mean

integrated squared error converges to zero with a fast rate, uniformly over a certain col-

lection of distributions of (X,Y ). Let us denote with D the collection of distributions

of (X,Y ) such that

1. For a constant σ2,

Var(Y |X = x) ≤ σ2, x ∈ R
d,

2. the regression function f(x) = E(Y |X = x) is Lipschitz continuous: for a

constant C,

|f(x) − f(z)| ≤ C‖x− z‖, x, z ∈ R
d,

3. X has compact support S ⊂ R
d.

The following theorem is proved in Györfi et al. [2002, Th. 4.3, p. 64].

2We denote with diam(A) = sup{‖x− y‖ : x, y ∈ A} the diameter of set A ⊂ Rd, where ‖ · ‖ is the

Euclidean distance, and with #I we denote the cardinality of a finite set I .
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Theorem 2 Let (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed.

Let f̂n be a regressogram with a cubic partition with side length

hn = C′

(

σ2 + supx∈S |f(x)|2

C2

)1/(d+2)

C2d/(d+2)n−2/(d+2),

where C′ is a positive constant depending on d and on the diameter of S. Then,

lim sup
n→∞

n2/(d+2) sup
(X,Y )∈D

E

∫

(

f̂n(x) − f(x)
)2

µ(dx) < ∞,

where µ is the distribution of X .

The previous theorem shows that a regressogram can achieve the rate of convergence

O(n−2/(d+2)), for Lipschitz continuous functions and for the L2 error. It can be proved

that this rate is fastest possible for this class of distributions, see Györfi et al. [2002, Th.

3.2, p. 38] for a lower bound that shows that rate O(n−2/(d+2)) cannot be improved

for Lipschitz continuous functions. However, it can be shown that smoother regression

functions, for example regression functions with s continuous derivatives can be esti-

mated with rate O(n−2s/(2s+d)) for the L2 error. The estimators achieving this faster

rate can be chosen as piecewise polynomials of order s− 1 or as kernel estimators with

a kernel of order s. Thus regressogram is optimal only for s = 1.

Irregular Partitions

We define an irregular partition to be a partition that consists of sets (rectangles) that

have different shapes and volumes at different parts of the X-space. First we give a

general consistency result for the regressograms with an irregular partition, then we

give results about rates of convergence separately for one- and two-dimensional cases.

Finally, we give an introduction to recursive partitioning and, in particular, to the CART

methodology.

Consistency

Let Π be a family of partitions of Rd. Define the partition number

∆n(Π) = max
{

∆(xn
1 ,Π) : x1, . . . , xn ∈ R

d
}

,

where ∆(xn
1 ,Π) is the number of distinct partitions of xn

1 = {x1, . . . , xn} ⊂ R
d

induced by elements of Π, i.e., the number of different partitions {xn
1 ∩A : A ∈ P} of

xn
1 for P ∈ Π. Let

M(Π) = max{#P : P ∈ Π}

be the maximal number of sets contained in a partition P ∈ Π.
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A method to choose a data-dependent partition is a mapping Pn that assigns to obser-

vation (x1, y1), . . . , (xn, yn) ∈ R
d ×R a partition of Rd. This mapping induces the

family

Πn =
{

Pn((x1, y1), . . . , (xn, yn)) : (x1, y1), . . . , (xn, yn) ∈ R
d ×R

}

of data-dependent partitions. Thus for a given observation we obtain a partition Pn ∈
Πn, and from this partition we obtain the regressogram f̂n.

The following theorem was proved in Györfi et al. [2002, Th. 13.1, p. 237] extending

the results of Nobel [1996]. In contrast to Theorem 1, which considered weak consis-

tency, Theorem 3 considers strong consistency.

Theorem 3 Let (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed.

Let Πn be a family of data-dependent partitions and let f̂n be the corresponding re-

gressograms. Let f̄n be a truncated regressogram, defined by

f̄n(x) =

{

f̂n(x), if |f̂n(x)| ≤ βn,

βn · sign(f̂n(x)), otherwise ,

where βn > 0. Assume that limn→∞ βn → ∞, limn→∞ β4
n/n

1−δ = 0 for some

δ > 0,

lim
n→∞

M(Πn)β
4
n log βn

n
= 0, (4)

lim
n→∞

log(∆n(Πn))β
4
n

n
= 0, (5)

and

lim
n→∞

inf
S:S⊂Rd,µ(S)≥1−δ

µ({x : diam(An(x) ∩ S) > γ}) = 0 (6)

almost surely for all γ > 0, δ ∈ (0, 1), where µ is the distribution of X and An(x) is

the bin A ∈ Pn of the partition which contains x. Then,

lim
n→∞

∫

(

f̄n(x)− f(x)
)2

µ(dx) = 0

almost surely.

Conditions (4) and (5) require that the set of partitions from which the data-dependent

partition is chosen is not too complex, i.e., the maximal number of bins in a parti-

tion and the logarithm of the partition number are small compared to the sample size.

Condition (6) requires that the diameters of the bins of the data-dependent partition

converge in a certain sense to zero.
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Rates of Convergence

Univariate Partitions through Total Variation Penalties

Mammen and van de Geer [1997] define a class of penalized least squares estimators

that contain as a special case piecewise constant estimators that are very close to re-

gressograms. Let

Yi = f(xi) + ǫi, i = 1, . . . , n, (7)

where 0 ≤ x1 < · · · < xn ≤ 1 are nonrandom and ǫi are independent, identically

distributed, and have mean zero. Define the estimator f̂n : [0, 1] → R as the minimizer

of
n
∑

i=1

(Yi − f(xi))
2
+ α · TV(f),

where α > 0 and TV (f) is the total variation metric defined by

TV(f) = sup

p−1
∑

j=1

|f(tj+1)− f(tj)| ,

where the supremum is over all p ≥ 2 and all points 0 < t1 < . . . < tp < 1.

In particular, for a piecewise constant right continuous function f with jump points

0 < t1 < . . . < tp < 1, TV(f) =
∑p−1

j=1 |f(tj+1)− f(tj)|. Also, for differentiable f ,

TV (f) =
∫ 1

0
|f ′(x)| dx.

Mammen and van de Geer [1997, Prop. 8] show that the estimator f̂n is almost a

regressogram with the partition Aj = [tj , tj+1), j = 1, . . . , p − 1, where the jump

points 0 < t1 < · · · < tp < 1 of the estimate are among the design points x2, . . . , xn.

More precisely, it holds that

f̂(x) = ŶAj
, for x ∈ Aj ,

where ŶAj
is defined in (1), unless f̂(tj) is a local maximum, local minimum, mini-

mum at the boundary, or maximum at the boundary. At local maxima the local average

is moved downwards and at local minima the local average is moved upwards. For α
large enough, at monotone pieces of f the estimate f̂ behaves like an isotonic least

squares estimate.3 The partition can be calculated with an iterative algorithm based

on stepwise addition and deletion of the endpoints of the intervals. For a given α the

algorithm takes O(n log(n)) steps and the estimate can be calculated for all α with

O(n2) steps. Mammen and van de Geer [1997] consider also more generally the total

variation metric of the kth derivative of the regression function as the penalty, and this

leads to an estimate which is a spline of order k − 1.

The estimator achieves optimal rates of convergence in bounded variation function

classes FC = {f : TV(f) ≤ C}, 0 < C < ∞. The following theorem follows from

Mammen and van de Geer [1997, Th. 10].

3The isotonic least squares estimate is the nonparametric least squares estimator under the monotonicity

restriction for the regression function.
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Theorem 4 Assuming the model (7), if f ∈ FC , then

1

n

n
∑

i=1

(

f̂n(xi)− f(xi)
)2

= Op

(

n−2/3
)

.

The rate O(n−2/3) is the minimax rate for the averaged squared error, because classes

FC are larger than the Sobolev classes {f :
∫ 1

0
(f ′)2 ≤ C}, and the minimax rate of

convergence has been proved to be O(n−2/3) for the Sobolev classes, see Ibragimov

and Hasminskii [1980], Stone [1982], and Nemirovskii et al. [1985]. In the total varia-

tion classes linear estimates (regressograms with a regular partition) do not achieve the

optimal rate. To achieve the optimal rate the smoothing must be locally adaptive (the

interval lengths of the regressogram have to change).

Dyadic CART

Dyadic CART was introduced in Donoho [1997], where the two-dimensional case d =
2, for the fixed equidistant design, and for the Gaussian errors is considered. Let f :
[0, 1]2 → R and

Yi = f̄(i) + σ ǫi, (8)

where i = (i1, i2) are fixed equispaced design points, i1, i2 = 0, . . . ,m − 1, m is

dyadic (an integral power of 2), f̄(i) is the cell average over the cell Ci: f̄(i) =
∫

Ci
f/volume(Ci), with Ci = [i1/m, (i1+1)/m)× [i2/m, (i2+1)/m). Furthermore,

ǫi are independent and identically distributed Gaussian random variables with mean

zero and unit variance, and σ > 0. The number of observations is n = m2.

Dyadic CART can be defined in two steps.

1. Let P∗ be the largest possible dyadic partition. A dyadic partition is a partition

that is obtained by midpoint splits of [0, 1]2. When the side length of a rectangle

is m−1, then this side is not allowed to be split. Thus the largest dyadic partition

consists of the rectangles with volume m−2.

2. Let Pα be the partition of [0, 1]2 that minimizes

m
∑

i1,i2=1

(

Yi − f̂n(xi,P)
)2

+ α ·#P

among all dyadic subpartitions of P∗, where xi is the midpoint of cell Ci,

f̂( · ,P) is the regressogram with partition P , α > 0 and #P is the cardinal-

ity of partition P . Define the dyadic CART estimator by

f̂n(x) = f̂n(x,Pα).
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Donoho [1997] proposes an algorithm with O(n) steps for the calculation of the opti-

mal partition, where n = m2 is the number of observations.

The dyadic CART estimator has the optimal convergence rate in anisotropic Nikol-

skii smoothness classes. For functions f : [0, 1]2 → R, define the finite difference

operators

D1
hf(x, y) = f(x+ h, y)− f(x, y), D2

hf(x, y) = f(x, y + h)− f(x, y).

Let 0 ≤ δ1, δ2 ≤ 1, 0 < C < ∞, and let p be such that 1/p < ρ+ 1/2, where

ρ =
δ1δ2

δ1 + δ2
.

Let the Nikolskii class of functions f : [0, 1]2 → Rwith mixed smoothness (anisotropic

class) be

Fδ1,δ2
p (C) =

{

f : ‖f‖p ≤ C, sup
h∈(0,1)

h−δk‖Dk
hf‖Lp(Qk

h
) ≤ C, k = 1, 2

}

,

where Q1
h = [0, 1−h)×[0, 1] and Q2

h = [0, 1]×[0, 1−h).4 These classes are discussed

in Nikol’skii [1969] and Temlyakov [1993].

Theorem 5 Assume model (8) and let α ≍ σ2 loge n.5 Then,

sup
f∈F

δ1,δ2
p (C)

E
1

n

n
∑

i=1

(

f̂n(xi)− f̄(xi)
)2

≤ C′

(

σ2 logn

n

)2ρ/(2ρ+1)

,

where C′ is a positive constant.

Cross validation is not needed for the choice of the smoothing parameter α, since a

choice for α given in Theorem 5 gives the optimal rate of convergence, up to a loga-

rithmic factor. The rate in Theorem 5 is the minimax rate, as proved in Donoho [1997].

We may call parameter p a “spatial inhomogeneity parameter”, because for p ≥ 2
it would suffice to use a regressogram with a regular partition which has a different

number of bins in each direction (to handle the anisotropicity) but to obtain the near

minimax rate for p < 2 it is required that the bin widths are locally adaptive, that is,

the partition is irregular. A regression estimate for random design regression based on

similar ideas than the Dyadic CART estimate but using piecewise polynomials was an-

alyzed for univariate data in Kohler [1999]. Figure 1(a) shows an example of a dyadic

partition.

4We define the Lp-norm by ‖f‖Lp(Q) = (
∫
Q
|f(x)|p dx)1/p .

5Notation an ≍ bn for positive sequences an, bn means that there exists positive constants C1 and C2

such that C1 ≤ lim infn→∞ an/bn ≤ lim supn→∞
an/bn ≤ C2.
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Recursive Partitioning

We review popular methods for choosing a partition of a regressogram. These methods

obtain the partition by recursive splitting of the space of explanatory variables. First we

define a greedy partition and second a CART partition. Figure 1(b) shows an example

of a partition that can be either a greedy partition or a CART partition.

Greedy Partition

A greedy partition is a partition of the space of the explanatory variables which is found

by a stepwise algorithm, which recursively splits the space to finer sets. This algorithm

is called greedy, or stepwise, because we do not try to find a global minimum for the

optimization problem but find the optimizer one step at a time. Morgan and Sonquist

[1963] presented this type of algorithm, although they did not restrict themselves to

binary splits but allowed a large number of splits to be made simultaneously.

First we define the split points over which we search the best splits. The splits are made

parallel to the coordinate axes and thus we have to define a grid of possible split points

for each direction. Let us denote the sets of possible split points by

G1, . . . ,Gd, (9)

where Gk ⊂ R is a finite grid of split points in direction k. A natural possibility for

choosing Gk is to take it to be the collection of the midpoints of the coordinates of the

observations: Gk = {Zk
1 , . . . , Z

k
n−1}, k = 1, . . . , d, where Zk

i is the midpoint of Xk
(i)

and Xk
(i+1):

Zk
i =

1

2

(

Xk
(i) +Xk

(i+1)

)

,

where Xk
(1), . . . , X

k
(n) is the order statistic of the kth coordinate of the observations

X1, . . . , Xn. This choice of possible split points guarantees that all the cells, even at

the finest resolution level, contain observations.

When rectangle R ⊂ R
d is splitted through the point s ∈ R in direction k = 1, . . . , d,

then we obtain sets

R
(0)
k,s = {(x1, . . . , xd) ∈ R : xk ≤ s} (10)

and

R
(1)
k,s = {(x1, . . . , xd) ∈ R : xk > s}. (11)

The split point s satisfies

s ∈ SR,k
def
= Gk ∩ projk(R), (12)

where projk(R) = Rk, when R = R1 × · · · ×Rd. We say that partition P is grown if

it is replaced by partition

PR,k,s = P \ {R} ∪
{

R
(0)
k,s, R

(1)
k,s

}

, (13)
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where rectangleR ∈ P is splitted in direction k = 1, . . . , d through the point s ∈ SR,k.

A greedy partition P is one of the partitions in the sequence of partitions found by the

following procedure.

• Start with the partition {Rd} and split the rectangles of the partition as long as

some rectangle contains a sufficient number of observations.

• Make splits so that the empirical risk of the corresponding regressogram is mini-

mized. The minimization is done over all rectangles in the current partition, over

all directions, and over all split points in the given rectangle and in the given

direction.

We describe the procedure more precisely in the following definition. The partition is

grown by minimizing an empirical risk of the estimator, which is typically defined as

the sum of squared errors of the estimator f̂ .

Definition 1 Greedy Partitions A sequence of greedy partitions P1, . . . ,PM , with

minimal observation number m ≥ 1, is defined recursively by the following rules.

1. Start with the partition P1 = {R}, where R = R
d.

2. Assume that we have constructed partitions P1, . . . ,PL, where L ≥ 1.

(a) If all R ∈ PL satisfy #{Xi ∈ R} ≤ m, then partition PL is the final

partition.

(b) Otherwise, we construct next partition PR̂,k̂,ŝ, where

(

R̂, k̂, ŝ
)

= argmin(R,k,s)∈I

n
∑

i=1

(

Yi − f̂(Xi,PR,k,s)
)2

, (14)

where

I = {(R, k, s) : R ∈ PL, #{Xi ∈ R} ≥ m,

k = 1, . . . , d, s ∈ SR,k},

SR,k is the set of split points defined in (12), PR,k,s is the partition defined

in (13), and f̂(·,P) is the regressogram defined in (2).

Let

P̂ ∈ {P1, . . . ,PM} ,

be a greedy partition, where P1, . . . ,PM are defined in Definition 1. The greedy re-

gressogram is defined by

f̂ = f̂
(

· , P̂
)

,
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where f̂ is defined in (2). We can use sample splitting to find a good partition P̂ and

thus a good regressogram. Let n∗ = [n/2] and use the data (Xi, Yi), i = 1, . . . , n∗,

to construct the sequence P1, . . . ,PM and the corresponding sequence of estimators

f̂1, . . . , f̂M . Then we calculate for each estimate the sum of squared residuals using

the second part of the data:

SSRm =
n
∑

i=n∗+1

(

Yi − f̂m(Xi)
)2

, m = 1, . . . ,M.

The final estimate is f̂m̂, where m̂ = argminm=1,...,MSSRm.

CART

CART (classification and regression tress) procedure was introduced in Breiman et al.

[1984]. In the previous section a sequence of partitions was constructed in a stepwise

manner and then one partition was selected from this sequence, using sample splitting,

to define the regressogram, CART constructs the sequence of partitions in a different

way. First a fine partition is grown with stepwise optimization and then the sequence of

partitions is found by a complexity penalized pruning. The new way of constructing the

sequence opens up the possibility for using cross validation to choose the final partition,

instead of sample splitting. Also, the complexity penalized pruning may increase the

quality of partitions in the sequence. In contrast to dyadic CART the large partition

P∗ is now data dependent. Otherwise the final estimate is obtained analogously as in

dyadic CART, by minimizing a complexity penalized sum of squared residuals. The

CART sequence is found by the following steps.

1. Choose a large partition P∗. This partition is the largest partition PM from the

sequence of greedy partitions defined in Definition 1.

2. For α ≥ 0, let

Pα = argminP⊂P∗

[

n
∑

i=1

(

Yi − f̂(Xi,P)
)2

+ α ·#P

]

, (15)

where f̂ denotes a regressogram as defined in (2). For α = 0, Pα = P∗, and for

large enough α, Pα = {Rd}. Since there are a finite number of subsets of P∗,

there are a finite number of values 0 = α1 < · · · < αM such that

Pα = Pαi
, when αi ≤ α < αi+1, (16)

for i = 1, . . . ,M , and we denote αM+1 = ∞. Now Pα1
= P∗ and PαM

=
{Rd}.

Definition 2 CART Partitions A sequence of CART partitions P1, . . . ,PM is defined,

with an abuse of notation, by Pi = Pαi
, i = 1, . . . ,M , where α1, . . . , αM is defined

by (16).
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We can use cross validation to find a good partition and thus a good regressogram.

In the case of greedy partitions we had to use sample splitting, that is, twofold cross

validation, but in the case of CART partitions the penalization parameter α can be used

to connect different partitions and we can use K fold cross validation for 2 ≤ K ≤ n.

Let us denote by I1, . . . , IK a partition of the index set {1, . . . , n}, where 2 ≤ K ≤ n.

Typically we partition observations into K = 10 subsets (ten fold cross validation)

but at most we can partition the observations to n subsets and at least to two subsets.

Observations (Xi, Yi), i /∈ Ik, are used to construct sequence f̂α1,k
, . . . , f̂αMk,k

, where

α1,k < · · · < αMk,k, k = 1, . . . ,K . For each estimate in the sequence we calculate

the average of squared residuals (ASR) using (Xi, Yi), i ∈ Ik:

ASRj,k =
1

#Ik

∑

i∈Ik

(

Yi − f̂αj,k
(Xi)

)2

, j = 1, . . . ,Mk, k = 1, . . . ,K.

Finally we use the complete data to find a sequence f̂α1
, . . . , f̂αM

and a gridα1, . . . , αM .

We make a partition of (0,∞) = UM
m=1Am, where αm ∈ Am and estimate

ASRαm
=

∑

{SSRj,k : αj,k ∈ Am}

#{(j, k) : αj,k ∈ Am}
, m = 1, . . . ,M.

The final estimate is f̂αm̂
, where m̂ = argminm=1,...,MASRαm

.

We need two algorithms to find the sequence P1, . . . ,PM : a growing algorithm for

growing the large partition P∗ and a pruning algorithm for producing the sequence

from this large partition. Both algorithms use the fact that the partitions which we

consider can be represented as binary trees, where the rectangles of the partition are

the nodes of the tree. The representation as a binary tree follows from the stepwise

splitting procedure. We take the whole space to be the root of the tree. After that, when

a node (a rectangle) is splitted, the two obtained rectangles are taken to be the child

nodes of the splitted node.

We choose P∗ as the largest partition PM from Definition 1. We can now use a faster

algorithm to obtain P∗ than the algorithm described in Definition 1, since this algo-

rithm uses unnecessary time to optimize the order in which the partition is grown, and

we are interested only in the final partition and not in the intermediate partitions. Thus

we can use an algorithm based on the following recursion. Let the minimal observation

number be m ≥ 1.

1. Start with the partition P = {Rd}. The rectangle Rd is taken to be the root node

of the initial binary tree.

2. Assume that we have constructed partition P . This partition is interpreted as a

binary tree.

(a) If all child nodes R ∈ P satisfy #{Xi ∈ R} ≤ m, then we finish the

splitting.

14



(b) Otherwise, choose a child node R ∈ P with #{Xi ∈ R} > m. Construct

new partition PR,k̂,ŝ, where

(

k̂, ŝ
)

= argmin(k,s)∈IR

n
∑

i=1

(

Yi − f̂(Xi,PR,k,s)
)2

,

where IR = {(k, s) : k = 1, . . . , d, s ∈ SR,k}, SR,k is the set of split

points defined in (12), PR,k,s is the partition defined in (13), and f̂(·,P) is

the regressogram defined in (2). Partition PR,k̂,ŝ is interpreted as a binary

tree, where rectangle R
(0)

k̂,ŝ
is the left child node of node R and rectangle

R
(1)

k̂,ŝ
is the right child node of node R, where we use the notation of (13).

After growing the large partition P∗ we need an algorithm to find the CART sequence

of Definition 2. To solve for a given α the complexity penalized minimization problem

(15), we can use a dynamic programming algorithm which starts at the leaves of the

binary tree T ∗ corresponding to P∗. If t is a node of T ∗, denote the sum of squared

residuals associated with this node by

ssr(t) =
∑

i:Xi∈Rt

(

Yi − ȲRt

)2
,

where Rt is the rectangle associated with node t. Denote with Q(t) the sum of ssr(t′)
over the leafs t′ of the subtree Tt whose root is t. Starting at the leaf nodes, we compare

at each node t whether

Q(t) + α ·#Tt < ssr(t) + α, (17)

where #Tt is the number of leaves in the subtree Tt. If this holds, then the subtree

whose root is t should be kept, because the complexity penalized error is smaller than

obtained by making t a leaf node. Otherwise, the tree is pruned at node t and t is made

a leaf node. The value Q(t) can be calculated during the pruning process.

To extend this idea to find the complete CART sequence and the corresponding values

α1, . . . , αM , note that we have for every nonterminal node t of T ∗ that Q(t) < ssr(t).
As long as (17) holds, branch Tt has a smaller error-complexity than the single node

{t}, but at some critical value of α, the two error-complexities become equal. At

this point the subbranch {t} is smaller than Tt, has the same error-complexity, and is

therefore preferable. To find this α, solve (17) to get

α <
ssr(t)−Q(t)

|Tt| − 1
.

The algorithm is based on finding the ”weakest links”, which are the nodes minimizing

gk(t) =

{

ssr(t)−Q(t)
|Tt|−1 , t is not a leaf in Tk

∞, t is a leaf in Tk,
(18)

k = 1, . . . ,K . Let t1 = argmint∈T0
g0(t), T0 = T ∗. Then t1 is the root node and α1 =

g0(t1) = 0. Let T1 be the subtree of T ∗ obtained by making t1 a leaf node. We continue
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in this way: tk = argmint∈Tk−1
gk−1(t) and αk = gk−1(tk) for k = 1, . . . ,M .6 We

get a sequence where α1 = 0, and for αk ≤ α < αk+1, the corresponding partition

Pαk
is the collection of rectangles associated with the leaf nodes of tree Tk.

Cross-References

Nonparametric curve estimation, Nonparametric regression, Wavelet methods

Conclusion

Regressograms with a regular partition can have the optimal rate of conver-
gence for estimating functions in Sobolev classes with smoothness index s = 1.

Regressograms with irregular partition can have the optimal rate of conver-
gence for estimating functions in total variation classes or functions in Nikolskii

classes when the spatial inhomogeneity parameter p is smaller than two.

In the one dimensional case, when X ∈ R, a regressogram is useful in es-
timating functions with jumps. Estimation of function with jumps is related to

change-point estimation. In the multivariate case, when X ∈ R
d with d > 1,

regressogram is useful in estimating piecewise constant functions, like images

(d = 2). For high dimensional analysis recursive partition is an viable alterna-

tive in multivariate regression function estimation, because CART type proce-
dures perform implicit variable selection.
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