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Abstract

Nonparametric density estimation has been applied successfully in mode detection. However, nonparametric analysis of the

shapes of unimodal densities has attracted less interest. Level set tree based techniques can be applied to analyze the shapes

of unimodal densities. A level set tree of a function is a tree structure of the separated components of level sets of the function.

Level set trees can be used to describe not only the shapes of functions but also the shapes of multidimensional sets; we can

define a distance function or a height function on a set and construct a level set tree of this function. Finally, level set trees

can be used to describe the shapes of point clouds, by applying appropriate smoothing. This leads to a computationally

efficient way of describing the shapes of unimodal densities.
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functions

1. Introduction

We are interested in the visualization of the dependence of random variables X1, . . . , Xd ∈ R. We shall assume that
the density function f : Rd → R of random vector (X1, . . . , Xd) is unimodal, and we shall visualize the dependency
by visualizing the shapes of the level sets of the density f . Usually density function f is unknown and has to be
estimated using a sample. We shall not discuss methods for density estimation but concentrate on the problem
of visualization. On the other hand, we shall discuss methods to directly visualize dependency using a data set
X1, . . . , Xn ∈ Rd sampled from f , bypassing the problem of density estimation.

We are particularly interested in the cases when d > 3. In order to visualize multivariate objects we have to
transform these objects to 2- or 3-dimensional objects, since humans cannot see higher than 3-dimensional objects.
Projections and slices are often applied to derive lower dimensional objects from high dimensional objects. We
consider an other possibility: the use of shape isomorphic transforms. This approach uses the fact that it is possible
to visualize a multidimensional object with a low dimensional object if these objects have the same shape.

A volume transform is the basic shape isomorphic transform which we shall apply. A volume transform is a
transform which is used to visualize local extremes of a function. A volume transformed function has the same
shape as the original function in the sense that the number and the sizes of the local extremes (either minima or
maxima) are equal.

A volume transform is used to visualize multimodality of functions, but we are interested in the visualization of
the dependency structure of unimodal densities. A volume transform can be applied to this purpose when we define
functions on the level sets of the density, and then use the volume transform to visualize the shapes of the functions
defined on the level sets. The (upper) level set of f with level λ ∈ R is defined by

Λ(f, λ) = {x ∈ Rd : f(x) ≥ λ}. (1)

Section 2 motivates the approach of dependency visualization via visualization of level sets. Section 3 contains
the basic definitions for the visualization of multimodal functions: the definitions of a level set tree and a volume
transform. Section 4 applies the concepts introduced in Section 3 to the visualization of sets. Section 5 applies the
concepts introduced in Section 3 to the direct visualization of data.

2. Dependency and level sets

Distribution function F : Rd → R may be decomposed into a part which describes the dependency and into a part
which describes the marginal distributions. We call a copula the part which describes the dependency. Copulas are
multivariate distribution functions whose one-dimensional marginal distributions are uniform on the interval [0, 1].
The basic idea is that any distribution function F : Rd → R of a random vector (X1, . . . , Xd) may be written as
F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), where C is the copula and Fi, i = 1 . . . , d, are the marginal distribution
functions: Fi(xi) = P (Xi ≤ xi). Let X1 and X2 be random variables with distribution functions F1 and F2. We
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have

F (x1, x2) = P (X1 ≤ x1, X2 ≤ x2)

= P (F1(X1) ≤ F1(x1), F2(X2) ≤ F2(x2))

= C(F1(x1), F2(x2)), (2)

where
C(u, v) = P (F1(X1) ≤ u, F2(X2) ≤ v), u, v ∈ [0, 1], (3)

that is, copula C is the joint distribution function of uniformly distributed random vectors F1(X1), F2(X2). An
exposition of copulas is given by Nelsen (1999).

We shall call a standard copula such a copula whose marginals are uniform distributions on [0, 1]. We can choose
the marginal distributions of a copula to be some other continuous distribution than the uniform distribution on
[0, 1]. It turns out that we get simpler copulas by choosing the marginal distributions of a copula to be the standard
Gaussian distribution. The densities of standard copulas have typically several local maxima and minima, whereas
copula densities with the standard Gaussian distribution as marginals are typically unimodal.

Similarly as in (2) we can write F as

F (x1, x2) = C
(

Φ−1(F1(x1)), Φ
−1(F2(x2))

)

,

where Φ : R → R is the distribution function of the standard Gaussian distribution and

C(u, v) = P
(

Φ−1(F1(X1)) ≤ u, Φ−1(F2(X2)) ≤ v
)

, u, v ∈ R. (4)

Now C is a distribution function whose marginals are standard Gaussian. Function C defined by (4) is a nonstandard
copula with standard Gaussian marginals. When F1 and F2 are continuous, then

C(u, v) = F
(

F−1

1 (Φ(u)) , F−1

2 (Φ(v))
)

, u, v ∈ R, (5)

is a nonstandard copula with standard Gaussian marginals. When copula C is defined by (5), then the copula
density is

c(u, v) = f
(

F−1

1 (Φ(u)), F−1

2 (Φ(v))
) φ(u)φ(v)

f1(F
−1

1 (Φ(u))) · f2(F
−1

2 (Φ(v)))
,

where f is the density of F , f1, f2 are the densities of F1, F2, and φ is the density of the standard Gaussian
distribution.

Figure 1(a) shows a scatter plot of exchange rates of Brazilian Real and Mexican Peso between 1995-01-05 and
2007-09-26. The rates are with respect to one U.S. Dollar and transformed to returns (ri 7→ (ri − ri−1)/ri−i). There
are 3197 observations. The data is provided by Federal Reserve Economic Data (http://research.stlouisfed.org).
Frame b) shows copula transformed data where the marginals are approximately uniform, and frame c) shows
copula transformed data where the marginals are approximately standard Gaussian. Frame b) shows that the
standard copula transform leads to data whose distribution is multimodal: the density has a local maxima at the
lower left corner and at the upper right corner, and an additional local maxima at the center of the plot. Also, the
density has a local minima at the left upper corner and at the right lower corner. Frame c) shows that the copula
transform with the standard Gaussian marginals leads to a unimodal density.

The situation in Figure 1 is typical: the standard copula leads to densities with many local extremes but the
copula with Gaussian marginals leads to unimodal densities. Using the copulas with the standard Gaussian marginals
makes it possible to visualize dependence with the level set tree based methods: unimodal densities have connected
and often even star shaped level sets, and we can visualize these level sets by defining functions on the level sets.

3. Shapes of functions

We shall define a level set tree in Section 3.1 and a volume function in Section 3.2. These concepts are used to
visualize multimodal functions but we shall apply these concepts later to visualize level sets of a unimodal density.

3.1 Level set tree

We use level sets to define a transform of a multivariate function to a univariate function. This volume transform
can be used to visualize the local maxima of a function: we visualize the number, size, and the tree structure of
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Figure 1: The figure illustrates data preprocessing with data of exchange rates of Brazilian Real and Mexican Peso
(n=3197). Frame a) shows a scatter plot of the data, frame b) shows the copula transformed data with uniform
marginals, and frame c) shows the copula transformed data with Gaussian marginals.

the local maxima. We may apply lower level sets to define an analogous transform to visualize the local minima
of a function. Combined together, these transforms give a comprehensive visualization of the local extremes of a
multivariate function. The concept of a level set tree is the basic concept underlying the definition of a volume
function. A level set tree and a volume function were defined in Klemelä (2004) for piecewise constant functions.
Here we use more general definitions.

Definition 1 (Level set tree.) A level set tree of function f : Rd → R, associated with set of levels L = {λ1 <
· · · < λL}, where λL ≤ supx∈Rd f(x), is a tree whose nodes are associated with subsets of Rd and levels in L in the
following way.

1. Write
Λ(f, λ1) = A1 ∪ · · · ∪ AK ,

where sets Ai are pairwise separated, and each is connected. The level set tree has K root nodes which are associated
with sets Ai, i = 1, . . . , K, and each root node is associated with the same level λ1.

2. Let node m be associated with set B ⊂ Rd and level λl ∈ L, 1 ≤ l < L.

(a) If B ∩ Λ(f, λl+1) = ∅, then node m is a leaf node.

(b) Otherwise, write
B ∩ Λ(f, λl+1) = C1 ∪ · · · ∪ CM ,

where sets Ci are pairwise separated, and each is connected. Then node m has M children, which are associated
with sets Ci, i = 1, . . . , M , and each child is associated with the same level λl+1.

Above we say that sets B, C ⊂ Rd are separated if inf{‖x− y‖ : x ∈ B, y ∈ C} > 0. and we say that set A ⊂ Rd

is connected if for each nonempty B, C ⊂ Rd such that A = B ∪ C, sets B and C are not separated. Thus, two sets
are separated if there is some space between them and a set is connected if it cannot be written as a union of two
separated sets.

3.2 Volume transform

Now we are ready to define a volume function. A volume transform is defined as the mapping which maps a function
to its volume function.

Definition 2 (Volume function.) Let f : Rd → R be a function, let µ be a Borel measure on Rd, and let T be a
level set tree of f .

• Annotate each node m of the level set tree T with an interval Im ⊂ R. Let the length of an interval be equal to the
µ-volume of the set annotated with the node. Let the intervals be nested according to the tree structure of the level
set tree. We comment later on the exact definition of the intervals.



• volume function v(f ; T ) : R → R is such that for each level λ ∈ R,

{x ∈ R : v(f)(x) ≥ λ} =
⋃

{Im : m is such node of T that λm ≥ λ} ,

where λm is the level and Im is the interval associated to node m.

Definition 2 does not specify the locations of the intervals associated to the nodes of a level set tree. We could
use rather arbitrary rules, but the following rule is quite natural. Choose first an interval [0, L], where L is greater
than the sum of the volumes of the sets associated to the root nodes. Then the intervals associated to the root
nodes are positioned inside [0, L] in a symmetric way. After that, one positions the intervals recursively, making a
nested collection of intervals according to the tree structure, and positioning the intervals symmetrically. Note that
we have note excluded the case where some of the level sets of the function have infinite volume. Note also that we
have not defined a level set tree as an ordered tree, so that the positioning of the sibling intervals may be done in
an arbitrary order.

4. Shapes of sets

When function f : Rd → R is unimodal, then its volume function does not contain much interesting information
about the function. However, we can analyze the shapes of the level sets of f using similar tools as the volume
function. We shall discuss the analysis of the shape of a set A ⊂ Rd, where A could be a level set of a density. We
define in Section 4.1 a shape tree and in Section 4.2 we shall define 3 ways to define a shape function based on a
shape tree.

4.1 Shape tree

We can analyze and visualize shapes of sets by first defining functions on the sets, and secondly using the level set
tree based methods of Section 3 for analyzing and visualizing these functions. The two basic ways to define functions
on a set use either a distance function or a height function. Let A ⊂ Rd.

1. A distance function fA : A → R with reference point µ ∈ Rd is defined by

fA(x) = ‖µ − x‖IA(x). (6)

2. A height function fA : A → R is the orthogonal projection of A onto a fixed line on Rd, when the line is
identified with R.

A distance function seems more natural to be used in the analysis of the shapes of the level sets of a unimodal
density. In many cases these level sets are star shaped, and there is a natural center point in the set (center of mass,
for example). Then the distance function characterizes how the set is evolving in different directions around the
center point. A shape tree was defined in Klemelä (2006).

Definition 3 (Shape tree.) A shape tree of a set A ⊂ Rd, associated with reference point µ ∈ A, and set of radii
R = {0 = r0 < r1 < · · · < rL}, is the level set tree of distance function fA of A with the reference point µ. The grid
of levels of the level set tree is R.

4.2 Shape transforms

A shape transform is a transform of a multidimensional set to a univariate function. Shape transforms are defined
similarly as a volume transform of a multivariate function in Section 3.2. In fact, we can define a shape transform
as a volume transform of a distance function of a set. This particular shape transform shall be called a radius
transform. However, we can define several different kinds of shape transforms. Other shape transforms include
the tail probability transform, and the probability content transform. A radius transform and a probability content
transform were defined in Klemelä (2006).

1. A radius transform is defined for connected sets. To put it shortly, a radius transform is a volume transform
of a distance function.

2. A tail probability transform is defined for a connected set, when there is a probability measure defined on
the set. For example, when the set is a level set of a density function, then the density function defines a
probability measure on the set. A tail probability transform is otherwise similar to a radius transform, but
now the length of the nodes is equal to the probability content of the sets, and not to the Lebesgue measure
of the sets as in the case of a radius transform.
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Figure 2: (Shape functions.) Frame a) shows the 0.5% level set of a density which has a Student copula with the
standard Gaussian marginals. Frame b) shows a corresponding radius plot, frame c) shows a tail probability plot,
and frame d) shows a probability content plot.

3. A probability content transform is defined for a connected set, when there is a probability measure defined on
the set. A probability content transform is otherwise similar to a radius transform but now the heights of the
nodes are determined so that a probability content function visualizes the probability content inside the set.
The length of a node is taken to be the volume of the associated set, like in a radius function.

Figure 2 shows shape functions of the 0.5% level set of a density which has the Student copula with the standard
Gaussian marginals. The correlation parameter of the copula is ρ = 0.6 and the degrees of freedom are ν = 2. Frame
a) shows the level set, frame b) shows a radius plot, frame c) shows a tail probability plot, and frame d) shows a
probability content plot.

5. Shapes of point clouds

The concept of a tail tree replaces the concept of a shape tree for the sets of finite cardinality. With tail trees one
may visualize the shape, the location, and the orientation of a multivariate point cloud x1, . . . , xn ∈ Rd. The point
cloud is interpreted as realizations of n random vectors having a common density function. The visualizations with
tail trees are tailored to the case where the point cloud does not have clusters (it is connected in the sense of a
single linkage hierarchical clustering). The assumption of the connectedness of the point cloud may be interpreted
as arising from the connectedness of the support, or a low-level level set, of the density which has generated the
observations.

The method is designed for visualizing dependency among several variables, whereas many of the other visual-
ization tools are more directed to finding and visualizing clusters in the data. The basic idea is to define a tail tree
among the observations. A tail tree can be visualized with a tail frequency plot, similarly as a shape tree can be
visualized with a tail probability function.

A tail tree is like a shape tree, defined in Section 4.1: we shall define a tail tree as a level set tree of a distance
function. However, unlike in the case of a shape tree, we restrict ourselves to the case where the set has finite
cardinality. Definition 1 of a level set tree was based on the concepts of separated sets and a connected set. Since
the set which we consider has finite cardinality, we cannot use the same concepts of separated sets and a connected
set. We shall first generalize the concepts of separated sets and a connected set and define a tail tree in Section 5.1.
then we define a tail frequency plot in Section 5.2. A tail tree and a tail frequency plot were defined in Klemelä
(2007).

5.1 Tail tree

We define ρ-separated sets and a ρ-connected set. The definition may be used for sets of finite cardinality, but it
applies for general sets in the multivariate Euclidean space, and not only for sets of finite cardinality.

Definition 4 (ρ-separated sets, ρ-connected set.)

1. Sets A, B ⊂ Rd are separated for the resolution threshold ρ ≥ 0 (ρ-separated), if for each x ∈ A and y ∈ B,
‖x − y‖ > 2ρ, where ‖ · ‖ is the Euclidean norm.
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Figure 3: (Tail frequency function.) Frame a) shows a scatter plot of data of size n = 1000, generated from a
distribution with a Student copula and standard Gaussian marginals. Frame b) shows a corresponding tail frequency
plot with the resolution threshold 1.

2. Set A ⊂ Rd is connected for the resolution threshold ρ ≥ 0 (ρ-connected), if for every nonempty B, C such that
A = B ∪ C, B and C are not separated for the resolution threshold ρ.

We shall define a tail tree for a finite set A = {x1, . . . , xn}. A tail tree shall be defined as a level set tree of a
distance function of A. A distance function fA : A → R with reference point µ ∈ Rd, of a set A ⊂ Rd, is defined as
fA(x) = ‖µ− x‖IA(x). A level set tree depends on a grid of levels. In the case of a tail tree we shall define the grid
of levels to be the distances of the points x1, . . . , xn from the reference point µ ∈ Rd.

Definition 5 (Tail tree.) A tail tree of set A = {x1, . . . , xn} ⊂ Rd, associated with a resolution threshold ρ ≥ 0, and
with center point µ ∈ Rd, is a level set tree of a distance function fA of A with the reference point µ. The level set
tree is defined as in Definition 1, but with the concepts of ρ-separated sets and a ρ-connected set as in Definition 4.
The grid of levels of the level set tree is R = {r1 < · · · < rn}, where

ri = min{‖x − µ‖ : x ∈ Xi},

with X1 = A and for i = 1, . . . , n − 1,
Xi+1 = {x ∈ A : ‖x − µ‖ > ri}.

5.2 Tail frequency plot

A tail frequency plot visualizes the heaviness of the tails of the underlying distribution. In the multivariate case
the tails of the distribution may have anisotropic heaviness: the tails may decrease at different rates in different
directions. For elliptical distributions the density has isotropic tails, determined by the 1D generator function, but
in the general case the tails are anisotropic.

The nodes of a tail tree are associated with subsets of the data. A tail frequency plot visualizes a tail tree so
that each node of the tree is drawn as a line whose length is proportional to the number of observations in the set
associated with the node. We identify the lines as level sets of a 1D function, and a tail frequency plot is similar to
a plot of a volume function, as defined in Definition 2. A tail frequency plot is a plot of a 1D piecewise constant
function, which is defined by associating each node of the tail tree to a separated component of a level set: (1) the
length of the separated component of a level set is equal to the number of observations in the node, (2) the height
of the separated component of a level set is equal to the distance of the closest observation from the center point,
among all observations associated with the node, and (3) the separated components of level sets are nested according
to the parent-child relations.

Figure 3 shows a data of size n = 1000 generated from a distribution which has the Student copula with the
correlation parameter ρ = 0.6 and degrees of freedom ν = 1. The marginals are the standard Gaussian distributions.
Frame a) shows a scatter plot of the data and frame b) shows a corresponding tail frequency plot with the resolution
threshold ρ = 1.
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