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Abstract

We consider the estimation of the support of a probability density
function with iid observations. The estimator to be considered is a
minimizer of a complexity penalized excess mass criterion. We present
a fast algorithm for the construction of the estimator. The estimator is
able to estimate supports which consists of disconnected regions. We
will prove that the estimator achieves minimax rates of convergence up
to a logarithmic factor simultaneously over a scale of Hölder smooth-
ness classes for the boundary of the support. The proof assumes a
sharp boundary for the support.
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Key Words: adaptive estimation, data dependent partitions, quality con-
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1 Introduction

We will present a method for the estimation of a support of a multivariate
probability density function. The method works also for the estimation of the
support of an intensity function of a Poisson process. The estimator is spa-
tially flexible, allowing us to estimate supports which consist of disconnected
components.

∗Writing of this article was financed by Deutsche Forschungsgemeinschaft under project
MA1026/6-2.
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The estimation of density support may be applied to the detection of
abnormal behaviour of the system, plant, or machine. We may apply our
estimator to define a nonparametric multivariate method for statistical qual-
ity control, which could extend the Shewart methodology based on tolerance
regions, see Derman and Ross (1997). Support estimation may also be ap-
plied to measure performance of an enterprise in terms of technical efficiency
measured by distance from the observed productivity to the boundary, see
Deprins, Simar and Tulkens (1984). We may apply our estimator to the
estimation of the support of a Poisson intensity. This may be applied for
example to estimate the boundary of a forest, when the location of individ-
ual trees is distributed according to a planar Poisson process with unknown
intensity function.

The previous methods for the support estimation may be classified at
least to three categories:

1. piecewise polynomial estimators,

2. estimators which are a union of balls centered at observations,

3. estimators which are based on the convex hull of sample points.

Piecewise polynomial estimators are defined for boundary fragments by
partitioning the fragment to intervals and by estimating the boundary on
each interval by a polynomial. For star shaped sets one may use piecewise
polynomial approximation on sectors. A piecewise constant estimator was
proposed by Geffroy (1964). Korostelev and Tsybakov (1993a) study piece-
wise polynomial estimator of maximum likelihood type. They derive mini-
max rates of convergence when the support has a sharp boundary. Härdle,
Park and Tsybakov (1995) consider support estimation with a piecewise poly-
nomial estimator when the boundary of the support is not sharp.

The estimator which is a union of balls centered at observations amounts
to estimating the support of the density by the support of a kernel estimate
whose kernel has a ball shaped support. These types of estimators were
considered by Devroye and Wise (1980), Cuevas and Fraiman (1997), Walther
(1997), Báıllo, Cuevas and Justel (2000).

When the support is a convex set, it makes sense to estimate it by a
convex hull of sample points. This type of estimator was studied by Rényi
and Sulanke (1963), Rényi and Sulanke (1964), Chevalier (1976). Ripley
and Rasson (1977) defines a blown-up version of the convex hull in order
to eliminate bias. A review is given by Schneider (1988). Korostelev and
Tsybakov (1994) and Mammen and Tsybakov (1995) derive the minimax
rates of convergence for the estimation of a convex set. Korostelev and
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Tsybakov (1994) establish 96% efficiency of a certain blown-up version of
the convex hull estimator. Korostelev, Simar and Tsybakov (1995) consider
sharp asymptotics for the case when the support is a monotone boundary
fragment. Gijbels, Mammen, Park and Simar (1999) consider estimation of
a support of a distribution when the support is a convex set or bounded by a
monotone function. Their problem arises in an econometric problem where
the frontier functions of production sets shall be estimated.

Korostelev and Tsybakov (1993b) contains results on estimators belong-
ing to all three categories. Hall, Nussbaum and Stern (1997) consider a
different type of estimator which is based on order statistics. Mammen and
Tsybakov (1995) study density support problem under a general setting of
entropy conditions. Their set up includes regions with boundaries that full-
fill smoothness conditions (Dudley classes) and convex sets. Polonik (1995)
derives rates of convergence for support estimation based on excess mass
estimates.

We will define a new type of estimator which does not belong to any of the
previous groups. The closest relative is the group of piecewise polynomial es-
timators, since the simplest form of our estimator may be seen as a histogram
type estimator with a data-dependent partition. Our method is related to the
classification and regression trees as defined by Breiman, Friedman, Olshen
and Stone (1984), and to dyadic CART as defined by Donoho (1997). This
type of method was first applied to boundary estimation in Donoho (1999),
who studied the estimation of the boundary of two dimensional regression
function with regular and fixed design.

The methods of category 1 in the above classification suppose that we
know the number and rough location of disconnected components of the
support. The methods of category 3 presuppose that the support is a convex
set. Our method is in this respect more flexible. The methods of category
2 are vulnerable to the curse of dimensionality, since they are kernel type
methods based on local averaging. Our estimator is based on economical
splitting of the sample space, making it possible to efficiently estimate high
dimensional supports.

In this article we propose to estimate the support by minimizing a com-
plexity penalized excess mass functional. Excess mass functional is defined as
−Pn(A)+λ mes(A) where Pn(A) is the empirical probability, mes(A) =

∫
A

dx,

A ⊂ Rd, and λ > 0. Excess mass functional was proposed to be applied in
level set estimation by Hartigan (1987), Müller and Sawitzki (1991), Polonik
(1995), Tsybakov (1997). Excess mass functional is useful also for the sup-
port estimation when we choose λ to be small. The corresponding estimator
is robust to outliers and we have feasible algorithms for solving the mini-
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mization problem. Indeed, we may apply a dynamic programming algorithm
which solves the minimization problem for spatially localized subsets of the
support and then builds the global solution from the previously solved local
problems. When the boundary of the support is sharp, that is, the density
has a jump on the boundary, then by choosing λ to be smaller than the jump,
the level set at level λ is equal to the support of the density.

We will prove that the proposed method has nearly minimax rates of
convergence simultaneously over a scale of Hölder smoothness classes for the
boundary. We will consider cases when the Hölder smoothness index s is
in interval (0, 2]. The cases s ∈ (0, 1] and s ∈ (1, 2] require different es-
timators. We will prove the results using the oracle inequality approach.
We have followed the approach of Donoho and Johnstone (1994) in that we
choose both the basis and a model under that basis instead of choosing only
the best model in a single basis. The method of using exponentially grow-
ing collection of bases has been applied for example in Donoho (1997) for
fixed design regression, in Donoho (1999) for fixed design boundary estima-
tion, in Barron, Birgé and Massart (1999) for various density, regression,
and boundary estimation problems, and in Klemelä (2001) for multivariate
density estimation.

In the statements of theorems we will make certain assumptions concern-
ing the underlying distribution. This does not mean that the estimator would
not behave favorably also in cases where these assumptions are not satisfied.
We will define estimators without model assumptions, unlike in some cases
where the support has been assumed to be star shaped or convex.

In Section 2 we define two estimators. First one is optimal for Hölder
smoothness index s ∈ (0, 1], d ≥ 2 and second one for Hölder smoothness
index s ∈ (1, 2] for d = 2. In Section 2.3 we present algorithms for the
construction of the estimates. In Section 3 we formulate theorems on the
rate of convergence of the estimators. In Section 4 we give three simulation
examples. The proofs are given in Section 5.

Simulations which were made for this article may be reproduced with a
R-package which is downloadable from http://www.denstruct.org.

We will denote mes(A) =
∫

A
dx. With IA we denote the indicator of set

A ⊂ Rd: IA(x) = 1 when x ∈ A and IA(x) = 0 otherwise. Euclidean distance
in Rd is denoted by ‖ · ‖. We apply the same notation for the Euclidean
distance in Rd−1. The relation an ∼ bn means limn→∞(an/bn) = 1. Generic
positive constants will be denoted by C, C1, C2, . . . Denote Πd

i=1[ai, bi] + η =
Πd

i=1[ai − η, bi + η] for η ≥ 0.
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2 Definition of the estimators

We will consider two types of estimators: (1) an estimator which is a union
of rectangles and (2) an estimator which is a union of rectangles and parts of
rectangles, resulting from a skew split. Estimators are minimizers of a com-
plexity penalized excess mass criterion among sets which can be represented
as a union of sets in a certain partition.

Let X1, . . . , Xn ∈ Rd be random vectors with density function whose
support we want to estimate.

2.1 Block estimator

Let us first consider an estimator which is a union of rectangles. We start
with defining the set of partitions with the help of which we define the class
of sets on which we search the minimizer. We will consider partitions which
are a result of a series of dyadic splits, when by a dyadic split of a rectangle
we mean a split along some coordinate axis which divides the rectangle to
two equal parts.

Set of partitions. We will denote by Pn(R) the set of dyadic partitions
of R, where R ⊂ Rd is a rectangle. This set consists of partitions of R that
result from of a series of dyadic splits. We will give a recursive definition
below.

Definition 1 We say that Pn(R) is the set of dyadic partitions of R =
Πd

i=1[ai, bi], with fineness parameter a > 0, if

1. {R} ∈ Pn(R),

2. if P ∈ Pn(R) and P = Πd
i=1[ci, di] ∈ P, and

di − ci > (bi − ai)2
−Jn

for some i = 1, . . . , d, where

Jn = ⌈a(d − 1)−1 log2 n⌉, (1)

then (P \ {P}) ∪ {P1, P2} ∈ Pn(R) where P1, P2 are the results of the
dyadic split of P in the i:th direction.

The definition implies a bound for the maximal fineness of partitions in
set Pn(R): at most Jn splits will be made to any direction and the rectangles
in the finest partition have volumes greater or equal to 2−dJnmes(R).

For the choice of the rectangle R we apply two methods.
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1. With a priori considerations one finds a rectangle which contains the
support. We make this assumption to analyze rates of convergence of
the estimator.

2. Denote by R− the smallest rectangle containing observations whose
sides are parallel to the coordinate axes, and choose R = R− + η where
η ≥ 0 and we apply notation Πd

i=1[ai, bi] + η = Πd
i=1[ai − η, bi + η]. We

choose R in this way in simulation examples.

We will denote later Pn = Pn(R).

Collection of sets. As the available class of sets from which we search a
minimizer we consider

An = An(R) = {A(P, W ) : P ∈ Pn(R), W ∈ W(P)} (2)

where W(P) is the set of 0-1-markers associated with partition P,

W(P) = {0, 1}P = {(wP )P∈P : wP ∈ {0, 1}} (3)

and A(P, W ) is the set which is the union of those sets in partition P which
are marked with 1 by set of markers W = (wP )P∈P ,

A(P, W ) =
⋃

{P ∈ P : wP = 1} . (4)

Complexity penalized excess mass criterion. Let the excess mass
functional be

γe
n(A) = − 1

n

n∑

i=1

IA(Xi) + λ mes(A)

where IA(x) = 1 when x ∈ A and IA(x) = 0 otherwise, and λ > 0. We
will define the complexity of a set A ∈ An to be the number of sets in the
corresponding partition. Let

D(W ) = #{wP = 1 : wP ∈ W} (5)

where W ∈ W(P) with P ∈ Pn. Let the complexity penalized excess mass
criterion be

En(P, W, α) = γe
n(A(P, W )) + α D(W ) (6)

where P ∈ Pn, W ∈ W(P), A(P, W ) is defined in (4), and α > 0.
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The estimator. We define the block estimator with the excess mass cri-
terion by

Âe
n = A(P̂e

n, Ŵ e
n) (7)

where
(P̂e

n, Ŵ
e
n) = argminP∈Pn,W∈W(P)En(P, W, α), (8)

α > 0 is the smoothing parameter, and En is defined in (6). In addition to the
smoothness parameter α, this estimator depends on the ”fineness” parameter
a and ”level set” parameter λ. Theorem 2 gives conditions for the choice of
these parameters.

2.2 Half block estimator

Let us consider an estimator which has the form of a union of rectangles and
halves of rectangles resulting from a skew split. We will call this estimator
half block estimator. We will use a ”library” of sets resembling the one
defined in Donoho (1999) with the help of wedgelets. In this section we will
restrict ourselves to the case d = 2.

The definition of the half block estimator differs from the definition of the
block estimator only in that we consider a different set of partitions which
will define the class of sets from which we search a minimizer.

We will consider partitions which are a result of a series of dyadic splits,
with possibly a split not parallel to the coordinate axes at the final stage.
We will give a recursive definition below.

Definition 2 We say that P
D
n (R) is the set of dyadic partitions of R =

Πd
i=1[ai, bi] which contains skew splits, with fineness parameters a > 0 and

b > 0, when d = 2, if

1. {R} ∈ P
D
n (R),

2. if P ∈ P
D
n (R) and P = Πd

i=1[ci, di] ∈ P, and

di − ci > (bi − ai)2
−J̃n

for some i = 1, . . . , d, where

J̃n = ⌈ad−1 log2 n⌉, (9)

then (P \ {P}) ∪ {P1, P2} ∈ P
D
n (R) where P1, P2 are the results of the

dyadic split of P in the i:th direction,
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3. if P ∈ P
D
n (R) and P = Πd

i=1[ci, di] ∈ P, and

di − ci ≥ (bi − ai)2
−J̃n

for some i = 1, . . . , d, then (P \ {P})∪ {P1, P2} ∈ P
D
n (R) where P1, P2

are a result of a skew split of P whose endpoints are on the boundary
of the rectangle P , and the set of possible endpoints forms a grid with
step size

δi = (bi − ai)2
−Ln , Ln = ⌈b(d + 1)−1 log2 n⌉

in i:th direction. The grid is such that it contains the four vertices of
P as grid points.

The definition allows splits not parallel to coordinate axes only for the
rectangles: once this kind of split is made, it is not anymore possible to split
results of this skew split. To be able to do skew splits we need that Ln > J̃n.

We define the half block estimator with the excess mass criterion by

Ãe
n = A(P̃e

n, W̃ e
n) (10)

where A(P, W ) is defined in (4),

(P̃e
n, W̃ e

n) = argminP∈PD
n ,W∈W(P)En(P, W, α),

W(P) is as defined in (3), En is defined in (6), and α > 0 is the smooth-
ing parameter. In addition to the smoothness parameter α, the estimator
depends on the ”fineness” parameters a and b, and ”level set” parameter λ.
Theorem 3 gives a result on the rate of convergence of this estimator.

Remark 1. The half block estimator is related to the wedgelet estimator
as defined in Donoho (1999), who considers the estimation of the boundary
of a regression function when the design is fixed and regularly spaced.

The wedgelet estimator has the binwidth n−1/2 in the finest rectangular
partition. This corresponds to the choice a = 1. The wedgelet estimator
allows ”subpixel” splits of the rectangles, and these splits have discretization
step n−2/3. This corresponds to the choice b = 2.

The partition in the definition of the wedgelet estimator is sligthly more
restrictive than the partition of the half block estimator. The partition of
the wedgelet estimator is defined by the condition that every rectangle will
be splitted by a ”quad-split”: a split which will result in 4 rectangles. The
partition of the half block estimator grows with dyadic splits. This will add
flexibility and computational complexity, see Section 2.3.
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2.3 Solving the minimization problem.

Let us discuss algorithms for solving the minimization problem in the defini-
tion of estimators Âe

n and Ãe
n which were given in (7) and (10).

One may solve the minimization problem by first building a large mul-
titree whose terminal nodes represent bins of the rectangle containing the
support. A path leading to a bin will represent a possible way of choosing
splits. Thus to each bin of the initial rectangle R corresponds many terminal
nodes of the tree. The minimization problem is solved by pruning the tree.

Growing the tree. Construct a multitree with a single root node and at
most 2d children for every node. The root node will correspond to the initial
rectangle R containing the support. We have d ways of choosing the splitting
direction and each binary split will result in two bins. Thus 2d children will
represent the rectangles resulting from binary splits in d directions.

For the case of block estimator at most Jn splits will be made for each
direction, thus the tree will have dJn levels where Jn is defined in (1). The
half block estimator will have dJ̃n levels where J̃n is defined in (9).

We will record the number of observations in each bin. When some bin
is empty we will not split it anymore. The resulting tree will have at most

dJn∑

i=0

(2d)i = O
(
(2d)dJn

)
= O

(
nad log2(2d)/(d−1)

)
.

nodes for the case of block estimator and O
(
(2d)dJ̃n

)
nodes for the case of

half block estimator. In the case of half block estimator we have to record
also the frequencies at the results of a skew split. Note that in the case of
the wedgelet estimator defined in Donoho (1999) the tree would have

J̃n∑

i=0

(2d)i = O
(
2dJ̃n

)

nodes.

Pruning the tree. To prune the tree we start from the next to the highest
level, and travel to the root node one level at a time. For each node we find
out whether the split to some of the d directions helps (whether it results to
a smaller complexity penalized excess mass criterion). If the split does not
help, we will cut the tree below the node.

We will formulate a lemma which formalizes the idea that we may solve
the global minimization problem (8) by first solving localized subproblems,
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and building the global solution from the previously solved local problems.
This lemma is given for the block estimator.

Lemma 1 Let R be the initial rectangle of the estimator and let R0 ⊂ R
be a rectangle. Let Pn(R0) be defined in Definition 1. Define the set which
solves the minimization problem when we localize to the rectangle R0:

Âe
n(R0) = A(P̂e

n(R0), Ŵ
e
n(R0))

where

(P̂e
n(R0), Ŵ

e
n(R0)) = argminP∈Pn(R0),W∈W(P)En(P, W, α).

Let R0 ⊂ R be now fixed and denote with R1,i and R2,i the left and the right
rectangle resulting from dyadic split of R0 in i:th direction, i = 1, . . . , d. Let

M = min {En ({R0}, α) ,

En

(
P̂e

n(R1,i), Ŵ
e
n(R1,i), α

)
+ En

(
P̂e

n(R2,1), Ŵ
e
n(R2,i), α

)
,

En

(
P̂e

n(R1,i), Ŵ
e
n(R1,i), α

)
,

En

(
P̂e

n(R2,i), Ŵ
e
n(R2,i), α

)
: i = 1, . . . , d

}
.

Then,

Âe
n(R0) =






R0, when M = En ({R0}, α)

Âe
n(R1,i) ∪ Âe

n(R2,i), when M = En

(
P̂e

n(R1,i), Ŵ
e
n(R1,i), α

)

+En

(
P̂e

n(R2,i), Ŵ
e
n(R2,i), α

)

Âe
n(R1,i), when M = En

(
P̂e

n(R1,i), Ŵ
e
n(R1,i), α

)

Âe
n(R2,i), when M = En

(
P̂e

n(R2,i), Ŵ
e
n(R2,i), α

)
.

Proof. Let the collection of sets An(R0) from which we search a minimizer
be defined in (2). We may express An(R0) recursively:

An(R0) = {R0} ∪ {A1 ∪ A2 : Ak ∈ An(Rk,i), k = 1, 2, i = 1, . . . , d}

∪
2⋃

k=1

d⋃

i=1

An(Rk,i).

On the other hand, when Pk ∈ Pn(Rk,i), Wk ∈ W(Pk), k = 1, 2, i = 1, . . . , d,
then

En (P1 ∪ P2, W1 ∪ W2, α) = En (P1, W1, α) + En (P2, W2, α) .
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Indeed, this follows directly from definition (6) since P1 and P2 are partitions
of disjoint rectangles. We have proved the lemma. �

In particular, when we choose R0 = R in Lemma 1, then Âe
n(R) = Âe

n is
the global solution defined in (7).

We give in the following the pseudo code for the pruning algorithm in the
case of the block estimator.

• Input for the algorithm is the smoothing parameter α > 0 and a mul-
titree, whose nodes represent certain bins. We will denote by lefti(m)
and righti(m) the pointers to the left and right childs of node m, when
the split is in the i:th direction, i = 1, . . . , d. Assume that for each
node m we have calculated emComp(m) = −freq(m)/n+λ mes(m)+α
where freq(m) is the number of observations in the set corresponding
to m.

• Output of the algorithm is a binary tree. This binary tree is pruned
from the original multitree. We represent this subtree by giving for
each node pointers ”left” and ”right”, which point to the left and right
child of the node.

• An internal data structure of the algorithm is the decoration S which
gives for every node of the tree the minimal excess mass complexity
for the collection of sets localized to the rectangle associated with this
node.

1. set maxdep = dJn (maxdep is the maximum level of the multitree)

2. go through levels starting from the next to the highest level: for
dep=(maxdep-1) to 1

(a) go through the nodes m at level dep

(b) if m is leaf node then S(m) = emComp(m)

(c) else

i. let M=min{Ei, E
left
i , Eright

i : i = 1, . . . , d} where we denote

Ei = S(lefti(m)) + S(righti(m))

Eleft
i = S(lefti(m))

Eright
i = S(righti(m))

ii. if emComp(m) < M then make m terminal node:

A. S(m) = emComp(m)
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B. left(m)=NIL, right(m)=NIL

iii. else if M=Ei then node m will be splitted to i:th direction
and it has two children:

A. S(m) = Ei

B. left(m) = lefti(m), right(m) = righti(m)

iv. else if M=Eright
i then node m will be splitted to i:th direction

and it has only the right child:

A. S(m) = Eright
i

B. left(m)=NIL, right(m) = righti(m)

v. else if M=Eleft
i then node m will be splitted to i:th direction

and it has only the left child:

A. S(m) = Eleft
i

B. left(m)=lefti(m), right(m)=NIL

(d) end if

(e) end go

3. end go

In the case of the half block estimator one has to make more comparisons
at each node to find out whether some of the skew splits will be better than
the splits along the coordinate axis.

3 Rates of convergence of the estimators

We consider estimation of the support of a uniform density f : Rd → R,

f = IA/mes(A)

where d ≥ 2, A ⊂ [0, 1]d, IA(x) = 1 when x ∈ A and IA(x) = 0 otherwise,
and mes(A) =

∫
A

dx.
We will denote by f the true underlying density and for B ⊂ Rd we will

denote gB = IB/mes(B). We will denote by S(g) the support of function g
so that for example f = gS(f).

Boundary fragments have been a prototype model for studying set es-
timation. We will assume the boundary fragment model in analyzing the
behaviour of the block estimator defined in Section 2.1. To analyze half
block estimator defined in Section 2.2 we assume that the support of the
density is star shaped. In the case of half block estimator we have assumed
also that d = 2.
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3.1 Block estimator

To prove a result for the rates of convergence of the block estimator, we
define a scale of Hölder smoothness classes for smoothness index 0 < s ≤ 1
for the boundary fragment model.

Let Hs be the Hölder class of functions of smoothness 0 < s ≤ 1 and
radius L > 0 on [0, 1]d−1. That is,

|h(t) − h(u)| ≤ L‖t − u‖s

for all t, u ∈ [0, 1]d−1 and h ∈ Hs. We assume also that for h ∈ Hs,

γ ≤ h(t) ≤ 1

for a fixed γ > 0. Denote by Ah the boundary fragment whose boundary is
given by h,

Ah =
{
x = (x1, . . . , xd) ∈ [0, 1]d : 0 ≤ xd ≤ h(x1, . . . , xd−1)

}
.

A class of uniform densities whose support is a smooth boundary fragment
is defined by

Fs = {gAh
: h ∈ Hs} (11)

where gAh
= IAh

/mes(Ah).
Consider the loss function

d1(Â, S(f)) = mes(Â∆S(f))

where S(f) is the support of the true density f and ∆ denotes symmetric
difference: A∆B = (A \B) ∪ (B \A). Notation for the loss function reflects
the fact that in terms of the boundary functions the loss is equal to the L1

error. Let
r =

s

s + d − 1
be the exponent of the minimax rate of convergence.

Theorem 2 Let estimator Âe
n be defined in (7) based on iid observations

X1, . . . , Xn. Choose the fineness parameter a ≥ 1, parameter of the excess
mass functional 0 < λ < 1, and initial rectangle R = [0, 1]d. Consider class
Fs defined in (11) where 0 < s ≤ 1. Let

α = Cα
loge n

n
(12)

where 0 < Cα < ∞. When Cα is sufficiently large, then

lim sup
n→∞

(n/ loge(n))r sup
f∈Fs

Efd1(Â
e
n, S(f)) < ∞.

A proof of Theorem 2 is given in Section 5. For the choice of α, see
equation (28).
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Remark 2. A proof that rate nr is the minimax rate of convergence for
Hölder boundary fragments is given in Korostelev and Tsybakov (1993b),
Section 7.3.

Remark 3. Estimator Âe
n does not depend on the smoothness parameter

s. Thus Theorem 2 shows that the estimator is adaptive in the sense that
it achieves nearly minimax rates simultaneously over a scale of smoothness
classes.

Remark 4. To achieve optimal balance between bias and variance we need
blocks with width n−1/(s+d−1). On the other hand, to achieve minimax rate
the finest partition should have blockwidth smaller than the minimax rate of
convergence: n−s/(s+d−1). When 0 < s ≤ 1, then n−1/(s+d−1) satisfies

n−1/(d−1) < n−1/(s+d−1)

and minimax rate satisfies

n−1/d ≤ n−s/(s+d−1).

We want to achieve minimax rates simultaneously over scale s ∈ (0, 1] and
thus the finest partition should have blockwidth

min{n−1/(d−1), n−1/d} = n−1/(d−1). (13)

That is why we choose in Theorem 2 the finest binwidth to be n−a/(d−1) where
a ≥ 1.

Remark 5. We have considered iid observations with n as the sample size.
When considering regression function estimation with regular fixed design,
then the corresponding step of the regular grid is n−1/d.

When 0 < s ≤ 1, then by (13), one needs the binwidth of the finest
partition to be smaller or equal to n−1/(d−1). Thus, since n−1/(d−1) < n−1/d,
with fixed regular design we are not able to estimate the support with the
rate n−s/(s+d−1). This was pointed out by Korostelev and Tsybakov (1993b).

3.2 Half block estimator

To prove a result for the rates of convergence of the half block estimator, we
define a scale of Hölder smoothness classes with smoothness index 1 < s ≤ 2
for sets with star shaped boundaries.
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Let Hs be the Hölder class of functions of smoothness 1 < s ≤ 2 and
radius L > 0 on [0, 2π). That is,

|h′(t) − h′(u)| ≤ L|t − u|s−1

for all t, u ∈ [0, 2π) and h ∈ Hs. We assume that for h ∈ Hs,

γ ≤ h(φ) ≤ 1/2

for γ = 0.1. Denote by Ah,µ the star shaped set centered at µ ∈ R2 whose
boundary is given by h:

Ah,µ = {x = µ + (r cos φ, r sin φ) : 0 ≤ r ≤ h(φ), φ ∈ [0, 2π)}.

A class of uniform densities whose support is a star shaped set is defined by

F̃s =
{
gAh,µ

: Ah,µ ⊂ [0, 1]2, h ∈ Hs, µ ∈ R2
}

(14)

where gA = IA/mes(A).

Theorem 3 Let estimator Ãe
n be defined in (10) based on iid observations

X1, . . . , Xn. Choose the fineness parameters a ≥ 1 and b ≥ 2, parameter
of the excess mass functional 0 < λ < 1, and initial rectangle R = [0, 1]2.
Consider class F̃s defined in (14) where 1 < s ≤ 2. Let

α = Cα
loge n

n
(15)

where 0 < Cα < ∞. When Cα is sufficiently large, then

lim sup
n→∞

(n/ loge(n))r sup
f∈F̃s

Efd1(Ã
e
n, S(f)) < ∞

where r = s/(s + d − 1), d = 2.

A proof of Theorem 3 is given in Section 5. For the choice of α, see
equation (33).

Remark 6. A proof that rate nr is the minimax rate of convergence is
given in Korostelev and Tsybakov (1993b), Section 7.3, for the boundary
fragments. A consequence of this is that the same rate is minimax for the
star shaped sets.
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Remark 7. When 1 < s ≤ 2 (and d = 2), then blocksize n−1/(s+d−1) for
the optimal bias-variance balancing satisfies

n−1/d < n−1/(s+d−1).

Thus we choose in Theorem 3 the finest blocksize to be n−a/d where a ≥ 1.
For 1 < s ≤ 2 the minimax rate n−s/(s+d−1) satisfies

n−2/(d+1) ≤ n−s/(s+d−1).

We have that
min{n−1/d, n−2/(d+1)} = n−2/(d+1).

That is why we choose in Theorem 3 the finest stepsize of skew splits to be
n−b/(d+1) where b ≥ 2.

Note the difference from the case 0 < s ≤ 1, where the minimum blocksize
from the bias-variance balancing was smaller than the minimum blocksize
from the rate of convergence. See equation (13).

Remark 8. Previously Barron et al. (1999) have proved a similar type of
result. Instead of excess mass functional they propose to apply a different
contrast function. Their estimator is of piecewise polynomial type and is not
able to adapt to the case when the support of the density has a number of
disconnected components.

4 Simulation examples

We give simulation examples for the block estimator. In simulation examples
we consider examples which do not satisfy the conditions of Theorem 2. The
definition of the estimator does not depend on these conditions and we may
conjecture that the estimator is usable in a wide range of different situations.

The simulation examples are mixures of standard two dimensional Gaus-
sian densities whose support is in fact the whole R2.

We chose the initial rectangle R for the simulation examples by first
choosing R− to be the smallest rectangle containing observations whose sides
are parallel to the coordinate axes, and then taking R = R−+η where η = 0.1.
The finest partition of R was chosen to contain 642 bins. The parameter λ
of the excess mass criterion was chosen λ = 0.1 in all examples.

The first example is the standard Gaussian density in R2 centered at
(0, 0). We generated a sample of 100 observations from this density. Figure
1 shows three block estimates with excess mass criterion. In Figure 1 a) we
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Figure 1: Estimates for a Gaussian density.
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Figure 2: Estimates for a mixture of 2 Gaussian components.

took α = 0.0006, in b) we took α = 0.00065, and in c) we took α = 0.0008.
The choice of the smoothing parameter as α = 0.00065 gives the best result.

The second example is an equal mixture of two standard Gaussians in R2.
Means of the components of the mixture are (0, 0) and (8, 0). We generated
a sample of 125 observations from this density. Figure 2 shows three block
estimates with excess mass criterion. In Figure 2 a) we took α = 0.0001, in
b) we took α = 0.0005, and in c) we took α = 0.0007. The choice of the
smoothing parameter as α = 0.0005 gives the best result.

The third example is an equal mixture of three standard Gaussians in
R2. Means of the components of the mixture lie in vertices of a triangle with
sidelength D = 8, that is, the means are

(0, 0), (D, 0) = (8, 0), (D/2, D
√

3/2) ≈ (4, 6.9).

We generated a sample of 150 observations from this density. Figure 3 shows
three block estimates with excess mass criterion. In Figure 3 a) we took
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Figure 3: Estimates for a mixture of 3 Gaussian components.

α = 0.00005, in b) we took α = 0.0006, and in c) we took α = 0.0009. The
choice of the smoothing parameter as α = 0.0006 gives the best result.

5 Proofs

We will give proofs for Theorems 2 and 3. The proofs are organized by
giving in Section 5.1 oracle inequalities, giving in Section 5.2 bounds for the
theoretical error-complexity, and finishing proofs in Section 5.3. The proof of
oracle inequalities is almost the same for both block estimator and half block
estimator but the approximation theoretic considerations in Section 5.2 are
different for the two estimators.

5.1 Oracle inequality

For P ∈ Pn or P ∈ P
D
n and W ∈ W(P), let K(P, W, α) be the theoretical

error-complexity,

K(P, W, α) = d1(A(P, W ), S(f)) + α D(W ) (16)

where S(f) is the support of the true density f . Let A0(f) and A0,D(f)
be the best approximations to S(f) in terms of theoretical error-complexity,
when we search over sets used in the definition of the block estimator and
half block estimator:

A0(f) = A(P0, W 0) (17)

where
(P0, W 0) = argminP∈Pn,W∈W(P)K(P, W, α)

and
A0,D(f) = A(P0,D, W 0,D) (18)
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where
(P0,D, W 0,D) = argminP∈PD

n ,W∈W(P)K(P, W, α).

We have an upper bound for the theoretical error complexity of com-
plexity penalized excess mass estimators Âe

n and Ãe
n. This upper bound con-

sists of theoretical error-complexity of best approximation with an additional
stochastic term.

Lemma 4 Let Âe
n and Ãe

n be defined in (7) and (10). Let 0 < λ < 1 be
the parameter of the excess mass functional. We have for f ∈ Fs, when
0 < s ≤ 1,

K(P̂e
n, Ŵ e

n, α) ≤ Cb

(
K(P0, W 0, α) + νn(Âe

n) − νn(A0(f))
)

and for f ∈ Fs, when 1 < s ≤ 2,

K(P̃e
n, W̃ e

n, α) ≤ Ch

(
K(P0,D, W 0,D, α) + νn(Ãe

n) − νn(A0,D(f))
)

for positive constants Cb, Ch, where

νn(A) =
1

n

n∑

i=1

IA(Xi) − Pf(A) (19)

for A ⊂ Rd.

Proof. The proof is same for Âe
n and Ãe

n. We will write the proof for Âe
n.

We have by the definition of Âe
n that

Kn(P̂e
n, Ŵ

e
n, α) ≤ Kn(P0, W 0, α). (20)

Also, excess mass functional may be written as

γe
n(A) = λ mes(A) − νn(A) − Pf(A). (21)

Denote by Sλ(f) the level set of density f at level λ:

Sλ(f) = {x ∈ Rd : f(x) ≥ λ}.

Then, for A ⊂ Rd,

λ mes(A) − Pf (A) (22)

= λ mes(Sλ(f)) − Pf(Sλ(f)) +

∫
|f(x) − λ|IA∆Sλ(f)(x)dx.
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From (20) and (21) we have

λ mes(Âe
n) − νn(Âe

n) − Pf(Â
e
n) + αD(Âe

n)

≤ λ mes(A0(f)) − νn(A0(f)) − Pf(A
0(f)) + αD(A0(f)).

Combining this with (22) implies

∫
|f(x) − λ|IÂe

n∆Sλ(f)(x)dx + αD(Ŵ e
n) (23)

≤
∫

|f(x) − λ|IA0(f)∆Sλ(f)(x)dx + αD(W 0) + νn(Âe
n) − νn(A0(f)).

The minimal jump size of the densities over considered classes at the bound-
ary of the support is 1. Thus

∫
|f(x) − λ|IÂe

n∆Sλ(f)(x)dx ≥ min{λ, 1 − λ} d1

(
Âe

n, Sλ(f)
)

.

All densities in considered classes are bounded by M = γ1−d. Thus
∫

|f(x) − λ|IA0(f)∆Sλ(f)(x)dx ≤ max{λ, M} d1

(
A0(f), Sλ(f)

)
.

These two inequalities and (23) imply the lemma, because for 0 < λ < 1, the
level set Sλ(f) is equal to the support of the density: Sλ(f) = S(f). �

We will need an upper bound for the cardinality of the class of all sets in
all partitions.

Lemma 5 Set of partitions Pn for the block estimator is defined in Definition
1. We have that

#

(
⋃

P∈Pn

P
)

≤ N
def
=

(2d)dJn+1 − 1

2d − 1
= O

(
nad log2(2d)/(d−1)

)
.

Set of partitions P
D
n for the half block estimator is defined in Definition 2.

We have that

#



⋃

P∈PD
n

P


 ≤ Ñ

def
= 42 · 22Ln+1 (d/2)dJ̃n+1 − 1

(d/2) − 1
= O

(
n2b/(d+1)na log2(d/2)

)
.

Proof. For the case of block estimator cardinality is bounded by the
number of nodes in a tree with dJn levels, with one root node, and 2d children
for every node. To the root node corresponds initial rectangle R and every
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rectangle may be splitted to two children in d directions, which results to 2d
children. Thus we have bound

dJn∑

i=0

(2d)i =
(2d)dJn+1 − 1

2d − 1
= O

(
2log2(2d)dJn

)
.

For the case of the half block estimator each rectangle may be splitted
with a skew split whose endpoints lie in a grid with cardinality 4·2−i/δ, where
4 · 2−i is the length of boundaries of rectangles in i:th level, and δ = 2−Ln is
the stepsize of the grid. Thus we have at most 2(4 ·2−i/δ)2 children resulting
from a skew split. Thus the total number of sets is bounded by

dJ̃n∑

i=0

2 · 42(2−i/δ)2(2d)i = 42 · 22Ln+1 (d/2)dJ̃n+1 − 1

(d/2) − 1
.

�

Now we may prove that the risk of estimators may be bounded by the
theoretical error-complexity. We will start with the block estimator.

Lemma 6 Consider estimator Âe
n defined in (7). Let α be defined in (28).

We have that

Efd1(Â
e
n, S(f)) ≤ C

[
K(P0, W 0, α) + n−1

]

for a positive constant C.

Proof. We have

Efd1(Â
e
n, S(f)) ≤ CbK(P0, W 0, α) + EfV

where
V = max

{
d1(Â

e
n, S(f)) − CbK(P0, W 0, α), 0

}

and Cb is from Lemma 4. It remains to prove that

EfV = O(n−1). (24)

Denote

Bn =

(
sup
P∈Pn

sup
W∈W(P)

w(A(P, W ))−1
∣∣νn(A(P, W )) − νn(A0(f))

∣∣ ≤ ξ

)

where ξ =
√

8, νn is defined in (19), and we define with an abuse of notation

w(A) = w(A(P, W )) = n−1 (x + LD(W ))
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with x > 0 and
L = loge(N) (25)

where N is defined in Lemma 5. First we prove that on Bn, V ≤ ξCbn
−1x,

that is
(V > ξCbn

−1x) ⊂ Bc
n. (26)

Secondly we prove that

P (Bc
n) ≤ C exp{−x}. (27)

We have that

EV = ξCbn
−1

∫ ∞

0

P (V > ξCbn
−1x) dx

and thus (24) follows from (26) and (27).

Proof of (26). By the definition of Bn we have that on Bn, νn(Âe
n) −

νn(A0(f)) ≤ ξw(Âe
n). Thus, by Lemma 4, on Bn,

K(P̂e
n, Ŵ

e
n, α) ≤ Cb

[
K(P0, W 0, α) + ξw(Âe

n)
]

= Cb

[
K(P0, W 0, α) + ξn−1(x + LD(Ŵ e

n))
]
.

We choose
α = ξCbn

−1L (28)

where L is defined in (25), ξ =
√

8, and Cb comes from Lemma 4. Thus, on
Bn,

d1(Â
e
n, S(f)) ≤ Cb

[
K(P0, W 0, α) + ξn−1x

]
.

We have proved (26).

Proof of (27). Define with an abuse of notation

ηA =
1

w(A)

(
IA − IA0(f)

)

where A = A(P, W ), A0(f) = A(P0, W 0), P ∈ Pn and W ∈ W(P). We have
that −w(A)−1 ≤ ηA(Xi) ≤ w(A)−1. Thus by Hoeffding’s inequality, see for
example Pollard (1984), page 191,

Pf

(∣∣∣∣∣
1

n

n∑

i=1

ηA(Xi) − EfηA(X1)

∣∣∣∣∣ > ξ

)
≤ exp

{
− nξ2w(A)

8

}
. (29)
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Since ξ =
√

8, we have

nξ2w(A)

8
= x + LD(W ). (30)

Now, for A = A(P, W ),

νn(A) − νn(A0(f)) = w(A)

(
1

n

n∑

i=1

ηA(Xi) − EfηA(X1)

)
.

Then, by (29) and (30),

P (Bc
n) ≤

∑

P∈Pn

∑

W∈W(P)

exp {−[x + LD(W )]} . (31)

Denote
Ψ(k) = {(P, W ) : P ∈ Pn, W ∈ W(P), D(W ) = k}

so that #Ψ(k) is equal to the number of ways we may choose k sets from the
set of all sets in all partitions. Now, defining N as in Lemma 5, by Stirling’s
formula,

# Ψ(k) ≤
(

N
k

)
≤ Nk

k!
≤
(

eN

k

)k

.

Thus, continuing from (31),

P (Bc
n) ≤

∞∑

k=1

∑

(P,W )∈Ψ(k)

exp {−(x + Lk)}

≤
∞∑

k=1

(
eN

k

)k

exp {−(x + Lk)}

≤ C exp {−x} , (32)

by the choice of L in (25). We have proved (27) and thus the lemma. �

We may prove a similar lemma for the half block estimator.

Lemma 7 Consider estimator Ãe
n defined in (10). Let α be defined in (33).

We have that

Efd1(Ã
e
n, S(f)) ≤ C

[
K(P0,D, W 0,D, α) + n−1

]

for a positive constant C.
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Proof. The proof is similar to the proof of Lemma 6. The difference is
that we set

α = ξChn
−1L (33)

where ξ =
√

8, Ch comes form Lemma 4,

L = loge(Ñ),

and Ñ is defined in Lemma 5. �

5.2 A bound for the theoretical error-complexity

So far the proofs have been similar both for the boundary fragment model
and for the star shaped sets. In this section we give a separate treatment for
the two cases.

Let A0(f) be defined in (17). We will give a bound for the error-complexity
of A0(f).

Lemma 8 Let Fs be defined in (11) for 0 < s ≤ 1 and let K be defined in
(16). We have that

sup
f∈Fs

K(P0, W 0, α) ≤ C

(
loge n

n

)s/(s+d−1)

for a positive constant C, when α is defined in (12).

Proof. Let f ∈ Fs and let h : [0, 1]d−1 → [0, 1] be the function defining
the boundary of the support of f . That is, f = gAh

= IAh
/mes(Ah). Let us

choose N0 so that
2N0 ∼ (n/ loge(n))1/(s+d−1).

Let Q be a partition of [0, 1]d−1 to rectangles whose sidelength is 2−N0 (and
volume is 2−(d−1)N0). We may construct a function h0 : [0, 1]d−1 → R, which
is piecewise constant on partition Q, that is,

h0 =
∑

P∈Q

aP IP

where aP ∈ [γ, 1], and with the property

∫

[0,1]d−1

|h − h0| = O
(
2−sN0

)
.
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This construction may be done with a piecewise constant interpolation of h.
On the other hand S(f) = Ah and thus

d1(S(f), Ah0
) = d1(Ah, Ah0

) =

∫

[0,1]d−1

|h − h0| .

Now choose N1 so that 2N1 ∼ n1/d. Make a grid 0 = q1 < · · · < qM = 1
where the distance between gridpoints is 2−N1 . Define function h̃0 which
approximates h0:

h̃0 =
∑

P∈Q

ãP IP

where ãP are the gridpoints closest to aP :

|ãP − aP | = min {|b − aP | : b ∈ {q1, . . . , qM}} .

We have that ∫

[0,1]d−1

∣∣∣h0 − h̃0

∣∣∣ = O
(
2−N1

)
.

Then
d1(S(f), Aeh0

) = O
(
2−sN0 + 2−N1

)
.

We have that 2−N1 = O(2−sN0) for all 0 < s ≤ 1. We have proved that

d1(S(f), Aeh0
) = O

(
2−sN0

)
. (34)

Now, because fineness parameter a ≥ 1, then Aeh0
∈ An where An is defined

in (2). See the discussion leading to equation (13). Let D(Aeh0
) be the

complexity of set Aeh0
(with an abuse of notation). By construction, D(Aeh0

) =

2(d−1)N0 . Thus

αD(Aeh0
) = O

((
loge n

n

)s/(s+d−1)
)

. (35)

Equations (34) and (35) imply the lemma since the bounds are uniform with
respect to f ∈ Fs. �

Consider secondly the case of star shaped sets.

Lemma 9 Let Fs be defined in (14) for 1 < s ≤ 2, and let d = 2. We have
that

sup
f∈Fs

K(P0,D, W 0,D, α) ≤ C

(
loge n

n

)s/(s+d−1)

for a positive constant C, when α is defined in (15).
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Proof. We may apply Lemma 8.5 (Edgel approximation), Lemma 8.6
(Edgelet approximation), and Lemma 8.7 (Counting ancestors) from Donoho
(1999) to prove the required bound. Indeed, by Remark 1 the set of partitions
PD

n is larger than the corresponding set of Donoho (1999). Thus we have at
least the same approximation properties. �

5.3 Finishing the proofs

Proof of Theorem 2 follows from Lemma 6 and Lemma 8. Proof of Theorem
3 follows from Lemma 7 and Lemma 9.
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