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Abstract

We visualize the spread of multivariate distributions with the help

of univariate and 2-variate functions. We distinguish between density

type visualizations and distribution function type visualizations. Den-

sity type visualizations visualize the functional relationship between

the level and the volume of the level sets of a density whereas distri-

bution function type visualizations apply general sequences of nested

sets and visualize the probability content of the sets as function of the

volume of the sets. We present methods which are able to visualize

the anisotropic spread of a distribution: these visualization tools show

how the spread varies in different directions. We define 2D functions

whose each mode correspond to a specific tail of the distribution.
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1 Introduction

We discuss visualization of the shape of a multivariate distribution and we
concentrate on the non-central regions of the distribution. We consider con-
tinuous distributions and assume that the distribution is unimodal or nearly
unimodal. The methods are usually robust with respect to small deviations
from the unimodality; the density may have several small local extremes.
When the distribution is a mixture of distributions whose supports are nearly
disjoint, then it makes sense to study the shape separately for each compo-
nent.

We define transformations of a multivariate distribution to a univariate or
a 2-variate function to visualize the multivariate distribution. In the case of
2-dimensional distributions we may apply perspective plots or contour plots
to draw the graph of the density or the graph of the distribution function,
but also in the 2-dimensional case it is useful to apply 1D curves to visualize
the spread of the distribution, since perspective plots and contour plots do
not give a clear visualization of the tail behavior of the distribution. We
apply two types of visualizations: (1) density type visualizations and (2)
distribution and quantile function type visualizations.

In density type visualizations we look how the volumes of the level sets of
a density are changing as function of the level. This leads to one-dimensional
curves which visualize the spread of a multivariate distribution. We define
the transformations in such a way that univariate symmetric densities remain
unchanged. In multivariate cases the volumes of the level sets are often
exploding when we move to the lower levels, and they are shrinking fast to
zero when we move to the higher levels. In addition, the volumes of some
multivariate sets vary irregularly as function of the dimension. For example,
the volumes of unit balls vary irregularly as function of the dimension. To
solve these problems we apply a dimension normalization.

Univariate density type visualizations do not visualize an anisotropic tail
behavior. We say that a distribution has anisotropic tails when the spread is
different in various directions. We propose to visualize the anisotropicity of
the spread of a multivariate distribution with 2-dimensional functions, whose
modes correspond to the extensions of the tails of the multivariate density.
We apply the radius transform to the level sets of the density and then clue
these transforms together to get a 2D function. The radius transform is a
shape isomorphic transform of a multivariate set to a univariate function and
it is defined in Klemelä (2004c).

In distribution and quantile function type visualizations we may apply
other sequences of sets than the sequence of the level sets of the density.
For example, we may look at the depth regions defined by a depth function.

2



We visualize the functional relation between the probability content and the
volume of the sets in the sequence. We consider a nested sequence of sets,
centered at a center point. This is different from the univariate case where
the distribution function visualizes the cumulation of the probability mass
when one travels from left to right.

Again, it is useful to apply a dimension normalization to get more easily
conceivable one dimensional spread functions and it is useful to clue together
shape isomorphic transforms of the sets to get a 2D function which visual-
izes anisotropic spread of the multivariate distribution. For distribution and
quantile function type visualizations we apply the cumulative tail probability
transform, which is such shape isomorphic transform which visualizes the
probability content of the tails of a set.

We may be interested in the spread of a distribution but we have avail-
able only a sample of observations from the distribution. To make density
type visualizations we need to estimate the level sets. Applying distribution
and quantile function type visualizations is sometimes easier, since we may
need only to calculate the empirical probabilities over some sequence of sets.
However, it may be useful to apply also in distribution and quantile function
type visualizations a sequence of estimates of level sets.

A multivariate function is given (stored in a computer) typically either
by giving its values on a multivariate grid, or by defining it as a linear combi-
nation of some simple functions, for example as an expansion in an orthonor-
mal system, or as a mixture of Gaussians. Kernel estimates are mixtures
of scaled kernel functions. Orthogonal series estimators are expansions with
basis functions. Boosting and bootstrap aggregation give density estimates
which have a mixture form, with a large number of mixture members. Even
when there are only few terms in the linear combination it is typically difficult
to grasp the shape of the function, when we are only given the coefficients of
the expansion. That is why we need visualization tools.

In Section 2 we define the density type visualizations. In Section 2.1 we
define a unimodal volume transform, in Section 2.2 we define a dimension
normalized unimodal volume transform, and in Section 2.3 we define a 2D
volume transform. In Section 3 we define the distribution and quantile func-
tion type visualizations. In Section 3.1 we define univariate distribution and
quantile functions of a multivariate distribution, in Section 3.2 we define the
dimension normalized versions, and in Section 3.3 we define a 2D probability
content function. Section 4 contains a discussion.

Computations and graphics in this article have been made with an R-
package ”denpro”, which may be downloaded from http://denstruct.net.
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2 Density type visualizations

Density type visualizations apply the sequence (Aλ)λ∈[0,∞) of the level sets of
a density. The level set of a density f : Rd → [0,∞) with level λ is defined
by

Aλ = {x ∈ Rd : f(x) ≥ λ}, λ ∈ [0,∞). (1)

Density type visualizations visualize the functional relation between the level
and the volume of the level sets in the sequence. When the density is un-
known, we have to estimate the level sets with a sample of observations from
the distribution of the density. We may estimate the level sets by estimating
the density function or we may estimate the level sets directly, see Klemelä
(2004a) and the references there.

2.1 Unimodal volume function

2.1.1 Definition

We call a level-to-volume function a function which maps levels to the volumes
of the level sets in the sequence. A volume-to-level function is the generalized
inverse of this function. These univariate functions characterize the spread
of a multivariate function.

Definition 1 The level-to-volume function V : [0,∞) → [0,∞), associated
to a multivariate density f : Rd → R, is defined by

V (λ) = volume(Aλ), λ ∈ [0,∞). (2)

The volume-to-level function V −1 : [0,∞) → [0,∞), is defined by

V −1(v) = sup{λ ∈ [0,∞) : V (λ) ≥ v}, v ∈ [0,∞),

where we use the convention sup ∅ = 0.

For example, when f(x) = (1/2)I[−1,1](x) is the uniform density on [−1, 1],
then V (λ) = 2, when λ ∈ [0, 1/2] and V (λ) = 0, when λ > 1/2. Function
V does not have inverse but the generalized inverse is V −1(v) = 1/2, when
v ∈ [0, 2] and V −1(v) = 0, when v > 2.

The volume-to-level function seems to be more natural to be used in
visualizations. In addition, we prefer to modify this function so that the
univariate symmetric densities remain unchanged through the transform. We
reflect the volume-to-level function with respect to the origin and scale it with
the factor 2 to get a symmetric density. We call this function a unimodal
volume function.
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Figure 1: Illustration of Definition 1 and Definition 2; the level-to-volume
function, the inverse of the level-to-volume function, and the unimodal vol-
ume function of the Bartlett density.

Definition 2 A unimodal volume function, associated to a multivariate den-
sity f : Rd → R, is any translation of function W : R → [0,∞),

W (t) =

{

V −1(2t), t ≥ 0
V −1(−2t), t < 0,

where V −1 is the volume-to-level function.

We have that
∫

∞

−∞
W =

∫

∞

0
V −1 = 1 and W ≥ 0. We may use the

term unimodal volume transform, since we have defined a transformation
of a multivariate density to a univariate (unimodal symmetric) density. The
unimodal volume transform of Definition 2 is related to the volume transform
defined in Klemelä (2004b). When the density f : Rd → R is unimodal, then
the definitions coincide. For multimodal densities the definition of Klemelä
(2004b) is more informative since it visualizes the volumes of the separated
regions of level sets, and thus it visualizes the relative largeness of the modes.

Illustration. Figure 1 illustrates Definition 1 and Definition 2. Frame a)
shows a level-to-volume function of the univariate Bartlett density t 7→
(3/4)(1 − t2)+, where (t)+ = max{0, t}. Frame b) shows the inverse of the
level-to-volume function of the Bartlett density (volume-to-level function).
Frame c) shows the unimodal volume function. We have positioned the uni-
modal volume function so that the left boundary of the support is at the
origin.

5



5 10 15 20

0
1

2
3

4
5

dimension

vo
lu

m
e

1
1

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r=1

r=0.5

Figure 2: Volumes of balls with radius r = 1/2 and r = 1 as function of the
dimension.

2.1.2 Illustrations with spherically symmetric densities

Let f(x) = g(‖x‖2), where g : [0,∞) → R. We call g the density generator.
We have

{x : f(x) ≥ λ} = {x : ‖x‖ ≤ rλ}, rλ =
√

g−1(λ), (3)

when g is monotonically decreasing. The level-to-volume function is thus
V (λ) = volume(Brλ

), where Br = {x ∈ Rd : ‖x‖ ≤ r}.

Volumes in high dimensional spaces. The volume of a ball with radius
r > 0 is

volume(Br) = Cd rd, (4)

where

Cd = volume(B1) =
πd/2

Γ(d/2 + 1)
. (5)

Figure 2 shows the volumes of balls with radius r = 1/2 and r = 1 as
function of the dimension. When r = 1/2, then the ball is inside a unit
square and its volume is always less than one. As the dimension grows
the dimension of the ball vanishes. When r = 1, then the volume is first
increasing as the dimension increases but finally the volume starts decreasing.
When r > (Γ(3/2)

√
π)−1 ≈ 0.6366198, then the volume is first increasing

before it starts decreasing.
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Figure 3: Frame a) shows unimodal volume functions of Bartlett densities
with σ = 1 for dimensions 1−5; in Frame b) σ = 1 and d = 6−10, in Frame
c) σ = 0.5 and d = 1 − 5, in Frame d) σ = 0.5 and d = 6 − 10.

Bartlett densities. The Bartlett density generator is

g(t) = c · (1 − t)+, t ∈ R, (6)

where (a)+ = max{0, a}, and c = d(d + 2)/[2µ(Sd)], where µ(Sd) = 2πd/2

Γ(d/2)

is the volume of the unit sphere. The multivariate scaled Bartlett density
is x 7→ σ−dg(‖x/σ‖2). Figure 3a-b shows unimodal volume functions for
dimensions 1− 10 of the standard Bartlett density. Since σ = 1, the volume
of the support is increasing until d = 5, but then starts decreasing, according
to Figure 2. Figure 3c-d shows unimodal volume functions for dimensions
1 − 10 of the Bartlett density with σ = 1/2. Since σ = 1/2, the volume of
the support is decreasing as function of the dimension.

Gaussian densities. Figure 4a-b shows unimodal volume functions of the
standard Gaussian densities for dimensions 1 − 2 and 3 − 4. The volume
of the support, with the given discretization level, is increasing when the
dimension is increasing.

Student densities. The Student density generator is

g(t) = c · (1 + t/ν)−(d+ν)/2, t ∈ R, (7)

where ν > 0 is the parameter (degrees of freedom) and c = Γ((ν+d)/2)

(πν)d/2Γ(ν/2)
.

Figure 4c-d shows unimodal volume functions of the Student densities with
degrees of freedom ν = 1 for dimensions 1 − 2 and 3 − 4.

2.1.3 Problems

The examples in Section 2.1.2 have brought up some problems with the
unimodal volume function.
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Figure 4: Frames a-b) show unimodal volume functions of the standard
Gaussian densities for dimensions 1−2 and 3−4. Frames c-d) show unimodal
volume functions of the Student densities with degrees of freedom ν = 1 for
dimensions 1 − 2 and 3 − 4.

(1) Concentration effect. The volume of the ball with radius r contains
the term rd. When r is small (smaller than 1), then the volume of the ball
with radius r is very small, and when r is large (larger than 1), then the
volume of the ball with radius r is very large. Thus a unimodal volume
function has often a sharp peak at the center and its tails are spreading
out. Note that in the case of visualizing multimodal densities with a volume
transform, zooming may be used to see the details, as in Klemelä (2004b).

(2) Dimension non-invariance. The volume of a ball contains multiplier
Cd which is not monotonic with respect to dimension d and thus the shapes of
unimodal volume functions may vary irregularly when the dimension varies.
For example, the unimodal volume functions of Bartlett densities have dif-
ferent shapes for various dimensions.

To address these problems we define a dimension normalized version of a
unimodal volume function.

2.2 Dimension normalized unimodal volume function

We define a dimension normalized unimodal volume function which visualizes
the shape of a multivariate density in a dimension insensitive way.

Definition 3 The dimension normalized level-to-volume function V ∗ : [0,∞) →
[0,∞), associated to a multivariate density f : Rd → R, is defined by

V ∗(λ) =

(

1

Cd
volume(Aλ)

)1/d

, λ ∈ [0,∞),

where Cd is defined in (5). The dimension normalized volume-to-level func-
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tion (V ∗)−1 : [0,∞) → [0,∞), is defined by

(V ∗)−1(v) = sup{λ ∈ [0,∞) : V ∗(λ) ≥ v}, v ∈ [0,∞),

where we use convention sup ∅ = 0.

As in the case of non-dimension normalized functions we prefer the volume-
to-level function and we symmetrize this function. In addition, we normalize
the function to integrate to one which makes the function more dimension
insensitive.

Definition 4 A dimension normalized unimodal volume function, associated
to a multivariate density f : Rd → R, is any translation of function W ∗ :
R → [0,∞),

W ∗ = c W ∗

0 , W ∗

0 (t) =

{

(V ∗)−1(t), t ≥ 0
(V ∗)−1(−t), t < 0,

where (V ∗)−1 is the dimension normalized volume-to-level function, and c is
the normalization constant: c−1 =

∫

∞

−∞
W ∗

0 .

As in the non-dimension normalized case, symmetric univariate densities
remain unchanged through the transform, up to a translation.

Proposition 1 When d = 1 and density f is symmetric unimodal, then
W ∗ = f(· − µ), for some µ ∈ R.

Proof. We have C1 = 2 and thus when d = 1, W ∗
0 = W ∗ is a density

whose level sets have lengths equal to the lengths of the level sets of f . �

Elliptical densities. Let f(x) = |detΣ|−1/2g(xT Σ−1x) be an elliptical den-
sity, where g : [0,∞) → R is a density generator and Σ is a symmetric
positive semi-definite dispersion matrix. We have

{x : f(x) ≥ λ} = {x : xT Σ−1x ≤ r2
λ}, rλ =

√

g−1 (|detΣ|1/2λ) , (8)

when g is monotonically decreasing. The volume of the ellipsoid in (8) is
equal to

volume
(

{x : xT Σ−1x ≤ r2
λ}

)

= |detΣ|Cd rd
λ,

where Cd is defined in (5). The dimension normalized level-to-volume func-
tion is λ 7→ |detΣ|1/drλ, where rλ is defined in (8), and the dimension nor-
malized volume-to-level function is r 7→ |detΣ|−1/2g(|detΣ|−2/dr2), r ≥ 0.
A dimension normalized unimodal volume function is t 7→ c g(|detΣ|−2/dt2),
t ∈ R, where c−1 = |detΣ|1/d2

∫

∞

0
g(u2)du. Thus a dimension normalized

unimodal volume function depends on the dimension only through g and
|detΣ|1/d. We have proved the following proposition.

9



−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

radius

no
rm

al
iz

ed
 le

ve
l

Bartlett and Gauss

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

radius

no
rm

al
iz

ed
 le

ve
l

d= 1
d= 2
d= 3

Student

Figure 5: Dimension normalized unimodal volume functions for the Bartlett,
standard Gaussian, and Student densities with degrees of freedom ν = 1 and
d = 1 − 3.

Proposition 2 Let fi : Rdi → R, i = 1, 2, be elliptical densities, fi(x) =
|detΣi|−1/2gi(x

T Σ−1
i x). If gi = cig for some g : [0,∞) → [0,∞), i = 1, 2, and

|detΣ1|1/d1 = |detΣ2|1/d2, then the dimension normalized unimodal volume
functions of the corresponding elliptical densities are equal, up to translation.

In particular, for spherically symmetric Gaussian and Bartlett densities
the dimension normalized unimodal functions are equal for all dimensions, up
to translation. Note that the shape of the Student density generator depends
on the dimension, in order the density to be integrable in all dimensions when
ν > 0. Figure 5 shows dimension normalized unimodal volume functions
for the Bartlett, standard Gaussian, and Student densities with ν = 1 and
d = 1 − 3.

2.3 A 2D volume function

There are 2 ways to modify unimodal volume functions. (1) Klemelä (2004b)
visualizes multimodality with 1D volume functions. (2) In this section we
visualize anisotropic tail behaviour. We define a plot which visualizes the
spread of a multivariate distribution so that one sees how the spread varies
in different directions. We define a transformation of a multivariate density
to a 2D function, which is called a 2D volume function.

The definition of a 2D volume function is based on the concept of the
radius transform, defined in Klemelä (2004c). The radius transform maps a
multivariate connected set to a univariate radius function so that the modes
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of the 1D radius function correspond to the extensions of the set. The radius
transform has 2 quantitative properties. (1) The lengths of the disconnected
parts of the level sets of a radius function are equal to the volumes of the
corresponding tail regions of the multivariate set. (2) The levels of the level
sets of a radius function are equal to the distance of the corresponding tail
region of the multivariate set from a center point of the set.

We define a normalized radius function so that its support is interval [0, 1]
and it integrates to the volume of the set, or to the dimension normalized
volume of the set. If gλ : [0, v] → [0,∞) is a radius function of level set Aλ,
where v = volume(Aλ), then the normalized radius function is hλ : [0, 1] →
[0,∞),

hλ(t) = c gλ(v t), t ∈ [0, 1],

where the normalization constant c may be chosen in 2 ways,

c =

{

v/
∫ 1

0
gλ(vt) dt

v∗/
∫ 1

0
gλ(vt) dt,

where v∗ = (v/Cd)
1/d is the normalized volume with Cd defined in (5).

There are at least 3 ways to clue normalized radius transforms (hλ)λ∈[0,∞)

together to make a 2D function. (1) We let the normalized radius transforms
to be the slices of a 2D function. (2) We let the graphs of the normalized
radius transforms to be the level sets of a 2D function. (3) We let the
normalized radius tranforms to be the boundary functions of 2D sets and
define these sets to be the level sets of a 2D function. We choose the first
of these ways, since it seems to lead to smooth 2D functions and this way of
defining a 2D function does not require the nestedness of the graphs of the
normalized radius transforms. The nestedness holds in typical cases but we
cannot guarantee the nestedness in all cases.

Definition 5 The 2D volume function V : (0,∞) × [0, 1] → [0,∞), corre-
sponding to density f : Rd → [0,∞), is the function whose slices are given
by the normalized radius functions:

V(λ, t) = hλ(t), t ∈ [0, 1],

for each level λ ∈ (0,∞).

Figure 6 illustrates Definition 5. Frame a) shows a contour plot of a
density with Gumbel copula with parameter θ = 2 and the standard Gaussian
marginals. Frame b) shows a radius function of the 10% level set. The radius
function visualizes the egg-shape of the level set: the radius function has two

11



−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

level

0.05

0.10

0.15

0.20

0.0

0.2

0.4
0.6

0.8
1.0

radius

0

5

10

15

20

25

Figure 6: A contour plot of a density with Gumbel copula and standard
Gaussian marginals, the radius function of the 10% level set, and the 2D
volume function of the 2D Gumbel density.

modes of unequal size and shape. The shapes of the level sets do not change
much when we move to the higher levels. Frame c) shows the 2D volume
function of the density. We do not apply the dimension normalization in this
example and in the examples below.

Figure 7a shows the 2D volume function of the product of two 1D Stu-
dent densities, the other has degrees of freedom ν = 1 and the other ν = 3.
The density has 4 extensions: it has heavy tails in each coordinate direc-
tion. Figure 7b shows the 2D volume function of the equal mixture of two
2D Gaussian densities, centered at the origin and whose marginal standard
deviations are (0.5, 1.5) and (3.5, 0.5). Also this density has 4 extensions.
The tails of the mixture of the Gaussians are less heavy than the tails of the
product of the Student densities.

Figure 8a shows the 2D volume function of the product of three 1D Stu-
dent densities, with degrees of freedom ν = 1. This 3D density has 6 exten-
sions, which show up as 6 modes in the 2D volume function. Figure 8b shows
the 2D volume function of a 3D density with Gumbel copula with parameter
θ = 2 and the standard Gaussian marginals. The shape of the function is
similar to the 2D Gumbel density shown in Figure 6c, but the 2D volume
function of the 3D density has higher modes.
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3 Quantile and distribution function type vi-

sualizations

In Section 2 we considered only sequencies of level sets of densities. When we
define quantile and distribution function type visualizations, then it makes
sense to consider also other sequencies of sets. We visualize the relationship
between the probability content and the volume of the sets in the sequence.

Let Aλ ⊂ Rd, λ ∈ [0,∞), be a collection of sets indexed with parameter
λ. We assume that the collection of sets is nested and decreasing:

Aλ1
⊃ Aλ2

, when 0 ≤ λ1 ≤ λ2 < ∞. (9)

We index the sequence of sets (Aλ)λ∈[0,∞) with the probabilities:

Cp = Aλp , p ∈ [0, 1], (10)

where
λp = sup{λ ∈ [0,∞) : P (Aλ) ≥ p}. (11)

The sequence Aλ is decreasing as λ is increasing and thus the level λp cor-
responding to probability p is well defined. We may consider the following
cases.

1. The sequence of sets depends on the underlying distribution.

(a) The sequence is constructed assuming knowledge of the underlying
distribution.

i. Level sets as defined in (1)

ii. Depth regions

iii. Minimum volume sets

iv. Central regions of a quantile function

(b) The sequence is estimated based on a sequence of identically dis-
tributed random vectors.

2. The sequence of sets does not depend on the underlying distribution.

Depth regions. We may choose the collection of sets to be the depth
regions associated with various depth functions D : Rd → [0,∞): Aλ =
{x ∈ Rd : D(x) ≥ λ}. A depth function D corresponding to a distribution
function F : Rd → R is such that when D(x) is large, then x is close to
the center of the distribution (it is deep inside the distribution), and when
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D(x) is small (close to 0), then x is distant from the center. Examples of
depth functions include Mahalabonis depth, the half-space depth defined by
Hodges (1955) and Tukey (1975), and data depths based on simplices like
the Oja depth defined by Oja (1983) and the simplicial depth defined by Liu
(1990). The convex hull peeling depth function is defined only at the data
points and it was considered by Barnett (1976).

We may relate many of the notions of data depth regions to level sets.
Indeed, one way to define a depth function is to take the depth equal to the
density: D(x) = f(x). We may call this the density-depth, or likelihood-
depth. When the density is elliptical, then the depth regions of a Mahal-
abonis depth with a suitable center vector and dispersion matrix are equal
to the level sets of the density. The simplicial depths measure the local con-
centration of the probability mass and are thus related to the density-depth.
The depth regions of the convex hull peeling depth estimate the level sets of
densities whose level sets are convex.

Minimum volume sets. We may choose the sets Cp to be the minimum
volume sets with a given probability content, when we perform the minimiza-
tion over a given collection of sets. Let S be a class of measurable sets and
define

Cp = argminC∈S{volume(C) : P (C) ≥ p}. (12)

These sets where considered for example by Einmahl and Mason (1992) and
Polonik (1999). Again, we may find a connection to level sets. When P has
density f : Rd → R, and class S is the class of Borel sets of Rd, then the
minimum in the definition of Cp is achieved by a level set of f , if f has no
flat parts: volume({x : f(x) = λ}) = 0 for λ > 0. Indeed, for all measurable
C ⊂ Rd with P (C) ≥ p, 0 < p < 1, we have that

volume(C) ≥ volume(Aλp),

where Aλ = {x : f(x) ≥ λ} and λp = inf{λ : Pf (Aλ) ≤ p}.

Central regions of a quantile function. A multivariate quantile func-
tion may be defined to be a function Q : Sd × [0, 1] → Rd, where Sd =
{x ∈ Rd : ‖x‖ = 1} is the unit sphere. In the univariate case we may de-
fine S1 = {−1, 1} and Q(−1, p) = F−1((1 − p)/2) as the left quantile and
Q(1, p) = F−1(1−(1−p)/2) as the right quantile, where F is the distribution
function. Define the pth central region as

Cp = {Q(u, q) : u ∈ Sd, 0 ≤ q ≤ p}, p ∈ [0, 1].
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These sets were proposed by Serfling (2002a). Multivariate quantile functions
may be defined as solutions to a minimization problem as in Chaudhuri (1996)
and Koltchinskii (1997), but they may be defined also through boundaries
of star shaped level sets, or star shaped depth regions, indexed with the
probability content.

Sequences independent of the distribution. We may take the se-
quence to be independent of the underlying distribution. A simple and
useful example is provided by the complements of balls, or the balls itself:
Aλ = Rd \ {x : ‖x − µ‖ ≤ λ} or Aλ = {x : ‖x − µ‖ ≤ 1/λ}, where µ is a
center point. Note that the center point µ has typically to be chosen based
on the data.

3.1 Quantile and distribution function

A quantile function maps probabilities to the volumes and a distribution
function is the generalized inverse of a quantile function.

Definition 6 A probability-to-volume function, or a quantile function, cor-
responding to distribution P , is defined by

Q(p) = volume
(

Aλp

)

, p ∈ [0, 1],

where λp is defined in (11). A volume-to-probability function, or a distribu-
tion function, is defined by

F (v) = inf{p ∈ [0, 1] : Q(p) ≥ v}, v ∈ [0,∞).

Alternatively, we may index the sequence of sets with volumes:

λv = sup{λ ∈ [0,∞) : volume(Aλ) ≥ v}, v ∈ [0,∞), (13)

and define the distribution function as v 7→ P (Aλv). The quantile function
is then defined as the generalized inverse of the distribution function.

Liu, Parelius and Singh (1999) call a probability-to-volume-function a
“scale curve” or a “scalar form of scale/dispersion”, in the case sets Aλ are
depth regions and Serfling (2002b) considers the case where the sets Aλ are
the central regions determined by a multivariate quantile function.

16



0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

probability

vo
lu

m
e

d= 1
d= 2d= 3

d= 4
d= 5

σ = 1

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

probability

vo
lu

m
e

d= 6

d= 7

d= 8

d= 9

d= 10

σ = 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

probability

vo
lu

m
e

d= 1

d= 2

d= 3

d= 4
d= 5

σ = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

probability

vo
lu

m
e

d= 6

d= 7

d= 8
d= 9d= 10

σ = 0.5

Figure 9: Probability-to-volume functions for Bartlett densities; in frame a)
σ = 1 and d = 1 − 5, in frame b) σ = 1 and d = 6 − 10, in frame c) σ = 0.5
and d = 1 − 5, in frame d) σ = 0.5 and d = 5 − 10.

Bartlett distribution. Figure 9 shows probability-to-volume functions for
the Bartlett density. Frame a) shows dimensions 1−5 for σ = 1 and Frame b)
shows dimensions 6−10 for σ = 1. In the range d = 1−5 a quantile function
corresponding to a higher dimension dominates a quantile function corre-
sponding to a lower dimension, but in the range d = 6 − 10 this relation
reverses. Frame c) shows dimensions 1 − 5 for σ = 0.5 and Frame d) shows
dimensions 6 − 10 for σ = 0.5. Because σ = 0.5, a quantile function corre-
sponding to a lower dimension dominates a quantile function corresponding
to a higher dimension. The dominating relations are explained by Figure 2.

Gaussian distribution. Figure 10a-b shows probability-to-volume func-
tions for the standard Gaussian density. Frame a) shows dimensions 1 − 2
and Frame b) shows dimensions 3− 4. A quantile function corresponding to
a higher dimension dominates a quantile function corresponding to a lower
dimension.

Student distribution. Figure 10c-d shows probability-to-volume func-
tions for the Student density with degrees of freedom ν = 1. Frame a) shows
dimensions 1− 2 and Frame b) shows dimensions 3 − 4. As in the Gaussian
case a quantile function corresponding to a higher dimension dominates a
quantile function corresponding to a lower dimension.

3.2 Dimension normalized versions

Quantile and distribution functions have similar problems as unimodal vol-
ume functions: the concentration effect and the dimension non-invariance.
The concentration effect for quantile functions means that the function is
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Figure 10: Frames a-b) show probability-to-volume functions for the stan-
dard Gaussian densities for dimensions 1 − 2 and 3 − 4. Frames c-d) show
probability-to-volume functions for the Student density with degrees of free-
dom ν = 1, for dimensions 1 − 2 and 3 − 4.

near zero at [0, 1−ǫ] but then explodes to take large values at [1−ǫ, 1]. Thus
we define a dimension normalized quantile and distribution function. A di-
mension normalized quantile function maps probabilities to the normalized
volumes.

Definition 7 A dimension normalized probability-to-volume function, or a
dimension normalized quantile function, corresponding to distribution P , is
defined by

Q∗(p) =

[

1

Cd
volume

(

Aλp

)

]1/d

, p ∈ [0, 1],

where Cd is defined in (5). A dimension-normalized volume-to-probability
function, or a dimension normalized distribution function, is defined by

F ∗(v) = inf{p ∈ [0, 1] : Q∗(p) ≥ v}, v ∈ [0,∞).

As an example consider the case where the sequence of sets is a sequence
of balls. The dimension normalized volume of a ball is equal to its radius.
Thus the dimension normalized quantile function is equal to p 7→ rp, where
rp is the radius of a ball with probability content p.

Bartlett distribution. Figure 11a shows the dimension normalized proba-
bility-to-volume functions for the Bartlett density, for dimensions 1 − 20.
Figure 12a shows the dimension normalized volume-to-probability functions.

Gaussian distribution. Figure 11b shows the dimension normalized proba-
bility-to-volume functions for the standard Gaussian density, for dimensions
1 − 20. Figure 12b shows the dimension normalized volume-to-probability
functions.

18



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

probability

ra
di

us

d= 1d= 2d= 3d= 4d= 5

Bartlett

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

probability

ra
di

us

d= 1d= 2d= 3d= 4d= 5

Gauss

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

probability

ra
di

us

d= 1d= 2d= 3d= 4d= 5

Student

Figure 11: Dimension normalized quantile functions for dimensions 1 −
20; Frame a) shows the Bartlett distribution, Frame b) shows the standard
Gaussian distribution, and Frame c) shows the Student distribution with
degrees of freedom 1.
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Figure 12: Dimension normalized distribution functions for dimensions 1 −
20; Frame a) shows the Bartlett distribution, Frame b) shows the standard
Gaussian distribution, and Frame c) shows the Student distribution with
degrees of freedom 1.
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Student distribution. Figure 11c shows the dimension normalized proba-
bility-to-volume functions for the Student density with degrees of freedom
ν = 1, for dimensions 1 − 20. Figure 12c shows the dimension normalized
volume-to-probability functions for the same parameters. We plot the func-
tions only up to radius 20, and thus the probability content of the sets does
not reach 1.

3.3 A 2D probability content function

Quantile and distribution functions as defined in Section 3.1 and Section 3.2
do not visualize anisotropic tail behaviour. We may use similar techiques as
in Section 2.3 to define a 2D function which visualizes the differences of the
spread at various directions. In Section 2.3 we defined a 2D volume func-
tion by cluing together normalized radius functions. Now we clue together
normalized cumulative tail probability functions. Similar to radius functions
these are shape isomorphic transforms of a multivariate connected set to a
univariate function. However, the length of a disconnected part of a level set
of a cumulative tail probability function is equal to the probability content
of the corresponding tail, and not equal to its volume, as in the case of a
radius function. Figure 13a shows a cumulative tail probability function of
the lowest level set in Figure 6a.

We define a normalized cumulative tail probability function so that a
cumulative tail probability function is scaled to interval [0, 1] and normalized
to integrate to the probability content of the set. If gλ : [0, p] → [0,∞) is
a cumulative tail probability function of set Aλ, where p = P (Aλ), then the
normalized cumulative tail probability function is hλ : [0, 1] → [0,∞),

hλ(t) = c gλ(p t), t ∈ [0, 1],

where c = p/
∫ 1

0
gλ(pt) dt = p2/

∫ p

0
gλ. We clue normalized cumulative tail

probability functions together indexing the sets Aλ with their volumes, or
with the dimension normalized volumes. Thus a 2D probability content
function is an extension of a volume-to-probability function (distribution
function).

Definition 8 The 2D probability content function F : (0,∞) × [0, 1] →
[0,∞), corresponding to distribution P , is a function whose slices are given
by the normalized cumulative tail probability functions:

F(v, t) = hλv(t), t ∈ [0, 1],
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Figure 13: Frame a) shows a cumulative tail probability function of a Gumbel
level set. Frames b) and c) show 2D probability content functions of 2D
densities. Frame b) shows a distribution with a Gumbel copula and the
standard Gaussian marginals and frame c) shows a product of two Student
densities.

for v ∈ (0,∞), when λv is either defined by (13), or we index the sets with
the dimension normalized volumes

λv = sup{λ ∈ [0,∞) :
(

C−1
d volume(Aλ)

)1/d ≥ v}, v ∈ [0,∞),

where Cd is defined in (5).

Figure 13b shows the 2D probability content function of the distribu-
tion with Gumbel copula with parameter θ = 2 and the standard Gaussian
marginals. Note that Figure 6c shows the 2D volume function of the same
distribution. Figure 13c shows the product of two univariate Student den-
sities whose degrees of freedom are ν = 1. Now the 2D probability content
function has 4 modes. Sets Aλ are the level sets and we index the sets with
the dimension normalized volumes.

4 Discussion

In the one dimensional case densities are superior in visualizing multimodal-
ity, but to visualize the spread and heavy tailedness we may use also distri-
bution and quantile functions. The advantage of distribution and quantile
functions is that they are easier to estimate than density functions. We have
studied the multivariate case and we have defined one and two dimensional
functions which visualize interesting features of the underlying multivariate
distribution. We transform a multivariate function in such a way that certain
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shape characteristics become visible. This is an alternative for using projec-
tions and slices to visualize a function. We have emphasized the usefulness
of level sets of densities in constructing the transforms. Many of the other
proposals can be seen as related to the level set based approach.

Further proposals. When we visualize a function it is useful to compare
the function to some well known reference case, for example to the standard
Gaussian distribution. We may plot the two functions to the same window,
or we may use PP-plot and QQ-plot type visualizations, where we plot the
points (g(t), φ(t)), t ∈ R, to visualize the differences of function g to the
reference function φ.

A further possibility to visualize the spread of a density f is to apply the
real valued random variable f(X), where X ∼ f . Note that the density of
random variable f(X) is g : [0,∞) → [0,∞), g(λ) = −λV ′(λ), where V (λ)
is the volume of the level set with level λ, as defined in (2). This was proved
in Troutt (1991).

Liu et al. (1999) propose 4 univariate curves to visualize kurtosis, relative-
spread, and heavy tailedness. (1) They propose to plot the Lorenz curve of
f(X), (2) they propose a data based Lorenz curve type plot using Mahal-
abonis distance, (3) a shrinkage plot visualizes the empirical frequencies of
shrinked central hulls, and (4) a fan plot visualizes the volumes of the convex
hulls of the central data points inside a central hull, in relation to the total
volume of the central hull.
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Klemelä, J. (2004c), ‘Visualization of multivariate density estimates
with shape trees’. Accepted to J. Comput. Graph. Statist.,
http://www.rni.helsinki.fi/˜jsk/ps/unimod.ps.gz.

Koltchinskii, V. I. (1997), ‘M-estimation, convexity and quantiles’, Ann.
Stat. 25, 435–477.

Liu, R. Y. (1990), ‘On a notion of data depth based on random simplices’,
Ann. Statist. 18, 405–414.

Liu, R. Y., Parelius, J. M. and Singh, K. (1999), ‘Multivariate analysis by
data depth: descriptive statistics, graphics and inference’, Ann. Statist.
27(3), 783–858.

Oja, H. (1983), ‘Descripitive statistics for multivariate distributions’, Statist.
Probab. Lett. 1, 327–332.

Polonik, W. (1999), ‘Concentration and goodness-of-fit in higher dimensions:
(asymptotically) distribution-free methods’, Ann. Statist. 27(4), 1210–
1229.

Serfling, R. (2002a), A depth function and a scale curve based on spatial
quantiles, in Y. Dodge, ed., ‘Statistical Data Analysis Based on the
L1-Norm and Related Methods’, Birkhäuser, pp. 25–38.
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