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Abstract

A level set tree of a function is a tree structure of the separated

components of the level sets of the function. The tree structure of

local minima or maxima of a function can be described by a level set

tree. Level set trees can be used to describe not only the shape of

functions but also the shape of multidimensional sets; we can define a

distance function or a height function on a set and construct a level

set tree of this function. Level set trees can also be used to describe

the shape of point clouds, by applying appropriate smoothing. With

the help of a level set tree one can define shape isomorphic transforms.

A shape isomorphic transform transforms a multidimensional object

to a low-dimensional object which has same shape characteristics as

the original multivariate object. This leads to a recursive analysis

of the shape of a function: we start by analyzing the structure of

local extremes of the function with level set trees and then continue

to analyze the shape of the connected components of the level sets.

A natural approach to mode testing consists of testing at each level

whether the level set contains separated components. Level set trees

provide a conceptual and computational framework for implementing

such a testing procedure.

Key Words: Level set tree, shape isomorphism, visualization of multivariate
functions.
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1 Introduction

We are interested in the visualization of multivariate functions f : Rd → R.
We are particularly interested in the visualization of functions when d > 3.
In order to visualize multivariate objects we have to transform these ob-
jects to 2- or 3-dimensional objects, since humans cannot see higher than
3-dimensional objects. Projections and slices are often applied to derive
lower dimensional objects from high dimensional objects. We consider an
other possibility: the use of shape isomorphic transforms. This approach
uses the fact that it is possible to visualize a multidimensional object with a
low dimensional object if these objects have the same shape. Usually a shape
isomorphism is defined in topology in terms of homeomorphisms and diffeo-
morphisms. However, these definitions apply to objects of same dimension
but we are interested in the similarity of objects of different dimensions.

A volume transform is the basic shape isomorphic transform which we
discuss in this article. A volume transform is a transform which is used to
visualize local extremes of a function. A volume transformed function has
the same shape as the original function in the sense that the number and the
sizes of the local extremes (either minima or maxima) are equal. We will use
the term mode isomorphism to describe this type of similarity in shape.

To define a volume transform we use the concept of a level set tree. Let
f : M → R, where M is a Riemannian manifold. The main cases considered
in this paper are M = Rd and M = Sd−1, where Sd−1 is the unit sphere:
Sd−1 = {x ∈ Rd : ‖x‖ = 1}. The (upper) level set of f with level λ ∈ R is
defined by

Λ(f, λ) = {x ∈ M : f(x) ≥ λ}, (1)

and the lower level set is defined by

Λ−(f, λ) = {x ∈ M : f(x) ≤ λ}. (2)

The exact level set is defined by

Γ(f, λ) = {x ∈ M : f(x) = λ}. (3)

The unqualified term “level set” will refer below to the upper level set.
Visualization of functions and sets are related to each other: a function

can be visualized by visualizing a collection of its level sets, and a set can
be visualized by defining a function on the set and then visualizing this
function. We take as the basic tool the visualization of a function with
a volume transform. We may proceed the visualization of a function by
visualizing level sets of a function: define a function on the level sets and use
a volume transform to visualize these level sets. This leads to a hierarchical
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exploration of the shape of a function. Under certain regularity conditions
(level sets are star shaped, level sets of the boundary functions of level sets
are star shaped, and so on), we get a cascade of simpler and simpler sets,
and in a sense the complete shape of a function can be visualized.

Section 2 contains the basic definitions: the definitions of a level set tree
and a volume transform. Section 3 elaborates on the concept of a volume
transform by discussing which properties of a multivariate function remain in-
variant under a volume transform: mode isomorphisms are defined. Section 4
discusses how volume transforms can be used in a hierarchical exploration of
the shape of a function.

2 Level set trees and volume functions

We define a volume function as a discrete structure in Section 2.1. This
definition is sufficient for practical purposes. In Section 2.2 we define a limit
volume function, which may be used to clarify general properties of a volume
function.

2.1 Volume transform

We use upper level sets to define a transform of a multivariate function to
a univariate function. This volume transform can be used to visualize the
local maxima of a function: we visualize the number, size, and the tree
structure of the local maxima. We may apply lower level sets to define an
analogous transform to visualize the local minima of a function. Combined
together, these transforms give a comprehensive visualization of the local
extremes of a multivariate function. The concept of a level set tree is the
basic concept underlying the definition of a volume function. A level set tree
and a volume function were defined in [1] for piecewise constant functions.
Here we introduce more general definitions.

Definition 1 (Level set tree.) Let M be a Riemannian manifold. A level
set tree of function f : M → R, associated with set of levels L = {λ1 <
· · · < λL}, where λL ≤ supx∈M

f(x), is a tree whose nodes are associated
with subsets of M and levels in L in the following way.

1. Write
Λ(f, λ1) = A1 ∪ · · · ∪ AK ,

where sets Ai are pairwise separated, and each is connected. The level
set tree has K root nodes which are associated with sets Ai, i = 1, . . . , K,
and each root node is associated with the same level λ1.
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2. Let node m be associated with set B ⊂ M and level λl ∈ L, 1 ≤ l < L.

(a) If B ∩ Λ(f, λl+1) = ∅, then node m is a leaf node.

(b) Otherwise, write

B ∩ Λ(f, λl+1) = C1 ∪ · · · ∪ CM ,

where sets Ci are pairwise separated, and each is connected. Then
node m has M children, which are associated with sets Ci, i =
1, . . . , M , and each child is associated with the same level λl+1.

Above we say that sets B, C ⊂ M are separated if inf{δ(x, y) : x ∈ B, y ∈
C} > 0, where δ(x, y) denotes the Riemannian distance and we say that set
A ⊂ M is connected if for each nonempty B, C ⊂ M such that A = B ∪ C,
sets B and C are not separated. Thus, two sets are separated if there is
some space between them and a set is connected if it cannot be written as a
union of two separated sets. Now we are ready to define a volume function.
A volume transform is defined as the mapping which maps a function to its
volume function.

Definition 2 (Volume function.) Let f : M → R be a function, let µ be a
Borel measure on M, and let T be a level set tree of f .

• Annotate each node m of the level set tree T with an interval Im ⊂
R. Let the length of an interval be equal to the µ-volume of the set
annotated with the node. Let the intervals be nested according to the
tree structure of the level set tree. Remark 1 comments on the exact
definition of the intervals.

• volume function v(f ; T ) : R → R is such that for each level λ ∈ R,

{x ∈ R : v(f)(x) ≥ λ} =

⋃

{Im : m is such node of T that λm ≥ λ} ,

where λm is the level and Im is the interval associated to node m.

There exists two approaches to define a level set tree.

1. We may define a level set tree only for piecewise constant functions. If
a function is not piecewise constant we may first approximate it with
a piecewise constant function, and then calculate the level set tree of
the piecewise constant approximation. This approach was used in [1].
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We say that a function f : M → R is piecewise constant if its range is
a finite set:

range(f)
def
= {f(x) : x ∈ M} = {λ1, . . . , λN} (4)

where λ1 < · · · < λN .

2. In this article we have defined level set trees for a larger class of func-
tions, and the discretization is made by choosing a grid of levels. This
approach is more general because Definition 1 applies also to piecewise
constant functions. In particular, if the function is piecewise constant,
as defined in (4), then we may choose the grid of levels of the level set
tree to be λ1, . . . , λN .

Definition 3 If a function is piecewise constant as defined in (4), then the
level set tree with the grid of levels λ1, . . . , λN is called the saturated level set
tree of the piecewise constant function.

The saturated level set tree of a piecewise constant function is such that
adding more levels to the grid does not lead to a more accurate representation
of the function with its level set tree.

A drawback of Definition 1 is that it is difficult to formulate general reg-
ularity conditions which would guarantee the applicability of the definition,
but at the same time would not be overly restrictive. Remark 2 discusses
regularity conditions which are needed in Definition 1.

Remark 1 Definition 2 does not specify the locations of the intervals asso-
ciated to the nodes of a level set tree. We could use rather arbitrary rules,
but the following rule is quite natural. Choose first an interval [0, L], where
L is greater than the sum of the volumes of the sets associated to the root
nodes. Then the intervals associated to the root nodes are positioned inside
[0, L] in a symmetric way. After that, one positions the intervals recursively,
making a nested collection of intervals according to the tree structure, and
positioning the intervals symmetrically. Note that we have note excluded the
case where some of the level sets of the function have infinite volume. Note
also that we have not defined a level set tree as an ordered tree, so that the
positioning of the sibling intervals may be done in an arbitrary order.

Remark 2 A level set tree is not defined for every function, since it may
not be possible to decompose each level set of a function to a finite number
of separated components. In practice the function we want to visualize may
often be approximated by a function which is piecewise constant on some
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simple sets, like rectangles. For these kind of functions a level set tree is
always defined. Also, for Morse functions a level set tree is always defined.
A function f : M → R is a Morse function if it is a smooth function (infinitely
differentiable) and all its critical points are nondegenerate. Point x ∈ M is
a critical point of f if all the partial derivatives of f vanish at x. A critical
point x is nondegenerate if det(d2

xf) 6= 0, where d2
xf is the Hessian matrix of

the second partial derivatives of f at x.

Remark 3 Level set trees contain certain ambiguity because the grid of
levels of a level set tree is arbitrary, and not determined by the underlying
function. We can remove to a certain extent the ambiguity in a volume
function by defining a limit volume function, see Definition 4 below.

2.2 Limit volume function

Definition 2 of a volume function depends on a level set tree, as defined in
Definition 1, which depends in turn on a finite grid of levels, which were
used to construct this level set tree. It is of interest to define a limit volume
function which would be independent of any grid of levels. A natural way to
define a limit function would be to choose a sequence of piecewise constant
functions fk which converge to f as k → ∞ (in L1(M), for example), calculate
a volume function v(fk; Tk) for each k, and define a limit volume function
v(f) as the limit of v(fk; Tk) as k → ∞ (in L1(R), for example). A naive
version of this approach does not work since the ordering of the nodes in the
level set trees affects the volume function, and we want to make the definition
independent of this ordering. Thus we are led to the following definition.

Definition 4 (Limit volume function.) Let f : M → R be a bounded func-
tion. Function v(f) : R → R is a limit volume function of f , if for each
sequence of grids of levels Lk = {λk,1 < · · · < λk,Nk

}, k = 1, 2, . . ., such that

1) λk,Nk
≤ supx∈M f(x), and

2) fk → f in L1(M), where

fk(x) =
Nk
∑

i=1

λk,iIAk,i
(x), x ∈ M, (5)

with
Ak,i = Λ(f, λk,i) \ Λ(f, λk,i+1),

i = 1, . . . , Nk − 1,
Ak,Nk

= Λ(f, λk,Nk
),
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we can find a sequence of level set trees Tk and volume functions v(fk; Tk)
such that

a) Lk is the grid of levels of level set tree Tk, and

b) v(fk; Tk) converges to v(f) in L1(R), as k → ∞.

3 Mode isomorphisms

We justify the usefulness of a volume function with the concept of a mode
isomorphism: a volume function is useful because it is a 1D function which
is mode isomorphic to the original multivariate function.

To define a mode isomorphism we need first to define the excess mass
associated with a node of a level set tree and second we need to define the
excess mass isomorphism of level set trees.

For piecewise constant functions an excess mass associated with a node
of a level set tree is equal to

∫

A
(f − λ) dµ, (6)

where A is the set associated with the node and λ is the level associated with
the node, see (8) for a precise expression. For general functions the excess
mass associated with a node of a level set tree will typically converge to the
integral in (6), when the grid of levels of the level set tree becomes finer.

To define the excess mass associated with a node of a level set tree we use
the following notations. Assume that with node m of a level set tree there is
associated level λ and set A. Then we write

set(m) = A, level(m) = λ.

Furthermore, with parent(m) we mean the unique parent of node m. We say
that a node is a descendant of node m if it is either a child of m or a child
of an other descendant of m.

Definition 5 The excess mass associated with node m of a level set tree is
defined by

excmass(m) =
∑

{µ(set(parent(m0))) (7)

× [level(m0) − level(parent(m0))] :

m0 is a descendant of m} .
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Remark 4 For piecewise constant functions the sum in the right hand side
of (7) may be written as an integral. We assume that the level set tree T is
saturated, that is, the grid of the levels of the level set tree is L = range(f).
Then, for every node m of T ,

excmass(m) =
∫

set(m)
(f(x) − level(m)) dµ(x). (8)

In words, the excess mass is the volume of the area which the piecewise
constant function delineates over a given level, in a given branch of the level
set tree.

Level set trees are said to be excess mass isomorphic if the level set trees
have isomorphic tree structures and if the excess masses of the corresponding
nodes are equal. We say that trees T1 and T2 are isomorphic, when there is
a bijection I from the set of nodes of T1 to the set of nodes of T2, such that
if m0 and m1 are nodes of T1 and m0 is the parent of m1, then I(m0) is the
parent of I(m1).

Definition 6 Level set trees T1 and T2 are excess mass isomorphic when

1. trees T1 and T2 are isomorphic,

2. for every node m of T1,

excmass(m) = excmass(I(m))

where I is the isomorphism between T1 and T2.

Now we are ready to define the concept of a mode isomorphism. Mode
isomorphism is defined between functions which are defined on possibly dif-
ferent manifolds M1 and M2. For example, the manifolds could be Euclidean
spaces with different dimensions: M1 = Rd and M2 = Rd′ .

Definition 7 (Mode isomorphism.) Let f : M1 → R and g : M2 → R be
bounded functions. Denote

λ
(f)
0 = sup

x∈M1

f(x), λ
(g)
0 = sup

x∈M2

g(x),

and
∆f,g = λ

(g)
0 − λ

(f)
0 . (9)

Functions f and g are mode isomorphic, when for all

λ1 < · · · < λN ≤ sup
x∈M1

f(x),

level set trees Tf of f and Tg of g are excess mass isomorphic, where Tf has
grid of levels {λ1, . . . , λN}, and Tg has grid of levels {λ1+∆f,g, . . . , λN+∆f,g}.
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We list some properties of a mode isomorphism. Let f and g be mode
isomorphic. Let ∆f,g be defined in (9). Then,

1. f and g have the same number of local maxima,

2. the level set of f with level λ has the same number of separated com-
ponents as the level set of g with level λ + ∆f,g,

3. for all λ ∈ R,
∫

(f≥λ)
f dµ1 =

∫

(g≥λ+∆f,g)
g dµ2,

where we use the notation (f ≥ λ) = {x ∈ M1 : f(x) ≥ λ}.

We can also tie the concept of a mode isomorphism and the concept of a
limit volume function together.

Proposition 1 Let f : M → R. Function f and a limit volume function
v(f) of f , defined in Definition 4, are mode isomorphic, if v(f) is such that
supx∈M f(x) = supt∈R v(f)(t).

Proof. If f and v(f) are not mode isomorphic, then there exists a grid
L of levels such that the corresponding level set trees are not excess mass
isomorphic. This implies that for some λ ∈ L,

0 <

∣

∣

∣

∣

∫

M

(f − λ)+ −
∫ ∞

−∞

(v(f) − λ)+

∣

∣

∣

∣

. (10)

Let Lk be such sequence of grids of levels that λ ∈ Lk, for k ≥ k0, for some
k0, and satisfying the conditions 1) and 2) of Definition 4. Let Tk be the level
set tree of f corresponding to grid Lk, and let fk be the quantization (5) of
f corresponding to grid Lk. We have

∣

∣

∣

∣

∫

M

(f − λ)+ −
∫ ∞

−∞

(v(f) − λ)+

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

M

(f − λ)+ −
∫

M

(fk − λ)+

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

M

(fk − λ)+ −
∫ ∞

−∞

(v(f ; Tk) − λ)+

∣

∣

∣

∣

+
∣

∣

∣

∣

∫ ∞

−∞

(v(f ; Tk) − λ)+ −
∫ ∞

−∞

(v(f) − λ)+

∣

∣

∣

∣

def
= A1,k + A2,k + A3,k.

We have that limk→∞ A1,k = 0, since fk → f in L1, by the choice of Lk. Also,
A2,k = 0 for all k ≥ k0, since by the construction, fk and v(f ; Tk) are mode
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isomorphic. (Indeed, the level set trees of fk and v(f ; Tk) are isomorphic
by the construction. These level set trees are also excess mass isomorphic
because the level sets of fk and v(f ; Tk) have the same volumes and the same
levels, and the definition of excess mass in (7) depends only on the volumes
and levels of the level sets.) Finally, limk→∞ A3,k = 0, since v(f ; Tk) → v(f)
in L1, as k → ∞, by the definition of a limit volume function in Definition 4.
We have reached a contradiction with (10). QED

4 Functions defined on a set and a cascade of

a function

A volume function is a univariate function and thus it contains only a small
amount of information about the original multivariate function. We can reach
a more detailed visualization when we continue to visualize the connected
components of the level sets of the function. Indeed, the nodes of a level
set tree are associated with connected components of manifold M, and we
should visualize those components.

Thus we have to discuss methods for visualizing connected subsets of
manifold M, whereas previously we discussed methods for visualizing func-
tions f : M → R. However, we approach the problem of set visualization
by defining a function on this set; we transform the task of set visualization
to the task of function visualization, and then we can use the previous tools
(volume function). We start with the case M = Rk. A function on a set
A ⊂ Rk may be defined at least in the following ways.

1. A distance function fA : A → R of A ⊂ Rk is defined by fA(x) =
‖m − x‖, where m ∈ Rk. Thus a distance function is constructed by
foliating the Euclidean space into the union of cocentric spheres.

2. A height function fA : A → R of A ⊂ Rk is the orthogonal projection
of A onto a fixed line on Rk, when the line is identified with R. Thus
a height function is constructed by foliating the Euclidean space into a
union of parallel planes.

A third kind of a function on a set is the boundary function of a star
shaped set. A distance function and a height function are defined on any
set, but the boundary function will be defined only for star shaped sets. We
define star shaped sets first for A ⊂ Rd and then for A ⊂ Sd−1, where Sd−1

is the unit sphere: Sd−1 = {x ∈ Rd : ‖x‖ = 1}. (1) We say that set A ⊂ Rd

is star shaped if there is a reference point m ∈ A and a boundary function
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fA : Sd−1 → [0,∞) so that we can write the set as

A = {m + rξ : ξ ∈ Sd−1, 0 ≤ r ≤ fA(ξ)}.

(2) We say that set A ⊂ Sd−1, d ≥ 2, is star shaped if there is a reference point
m ∈ A and a boundary function fA : Tη → [0, π], Tη = {ξ ∈ Sd−1 : ξ ⊥ η}, so
that we can write the set as

A = {m · cos θ + ξ · sin θ : ξ ∈ Tη, 0 ≤ θ ≤ fA(ξ)}.

Note that set Tη is isomorphic with Sd−2. A distance function and a boundary
function are related to each other: both describe how the set is extending in
various directions around a center point m. A natural choice for the center
point is the barycenter: m =

∫

A x dµ(x)/
∫

A dµ. The barycenter is the center
of the mass of the set. A height function is based on a one dimensional
projection and thus one would need several height functions to visualize all
tails of a star shaped set. When the set is star shaped, then it may be
reasonable to use a boundary function instead of a distance function: the
boundary function is defined on the unit sphere, which is a lower dimensional
manifold than than the Euclidean space where the set is defined. Thus we
achieve a dimension reduction when we describe a star shaped set with its
boundary function.

One may now consider a recursive scheme for the visualization of a func-
tion. We start by constructing a level set tree of the function, and draw the
volume function. Then we define a set function (a height function, distance
function, or boundary function) for the connected components associated
with the nodes of the level set tree. We construct a level set tree for each set
function. One continues in this way, defining at each step new set functions
for the connected components of the sets associated with the nodes of the
level set trees of the previous step. However, the recursive scheme seems
most natural when one uses boundary functions, instead of height or dis-
tance functions. This is due to the fact that the dimension of the boundary
functions will decrease at each step, and these functions will reflect better
the inherent shape of the sets (assuming that the sets are star shaped).

We now describe in more detail the scheme for constructing a nested
structure of level set trees which zoom into the shape of the function, when
boundary functions are used to represent star shaped sets. The fundamen-
tal idea is that if a k-dimensional set is star shaped, then it can be repre-
sented with a k−1-dimensional boundary function. Starting with a function
Rd → R, we construct a level set tree of the function and make the volume
function. Then we take a connected component of a level set of f under
closer inspection. If this d-dimensional set is star shaped, we can find its
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d−1-dimensional boundary function, construct a level set tree and a volume
function of the boundary function. We may continue in this way, taking next
a connected component of a level set of the boundary function under closer
inspection. At each step the dimension is decreasing by one, so that after d
steps we end up with a one-dimensional function. We define a cascade of a
function to be a tree structure of level set trees.

Definition 8 A Cascade of a function f : Rd → R is a tree whose nodes
are annotated with level set trees. The cascade has d levels.

• Level 1: the root node of the cascade is annotated with a level set tree
of f .

• Level 2: let C be the collection of those sets A ⊂ Rd, associated with
the nodes of the level set tree of f , which are star shaped. Construct
a boundary function g : Sd−1 → R for each set A ∈ C and construct a
level set tree for each function g. These level set trees are the children
of the root node.

• Levels k ∈ {3, . . . , d}: let us consider a node n of the cascade at level
k−1, annotated with a level set tree of a function g : Sd−k+2 → R. Let
C be the collection of those sets A ⊂ Sd−k+2, associated with the nodes
of the level set tree of g, which are star shaped. Construct a boundary
function g : Sd−k+1 → R for each set A ∈ C and construct a level tree
for each function g. These level set trees are the children of n.

Remark 5 Note that the level set tree of a distance function of a set is the
same as a shape tree of the set, when a shape tree is defined in [2].
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