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Abstract

We introduce graphical tools to visualize the shape, the location and
the orientation of a multivariate data set. We define a tree struc-
ture among the observations, called a tail tree. A tail tree is a tree
whose root node corresponds to a center point of the data, and whose
branches correspond to the tails of the data. We visualize a tail tree
with a tail tree plot. Visualizing the tree structure among the obser-
vations makes it feasible to detect features from the data. A tail tree
may also be used to define and enhance other visualizations. We de-
fine a tail frequency plot which visualizes the empirical probabilities
of the disconnected tails of the point cloud. A tail tree induces a seg-
mentation of the data which may be used to enhance a grand tour,
graphical matrices, and parallel coordinate plots. We apply tail tree
plots in exploratory data analysis of financial data.
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1 Introduction

We want to visualize the shape, the location, and the orientation of a multi-
variate point cloud x1, . . . , xn ∈ Rd. We interpret the point cloud as realiza-
tions of n random vectors having a common density function. We concentrate
on the case where the point cloud does not have clusters (it is connected in the
sense of a single linkage hierarchical clustering). We define a tree structure
among the observations, which is called a tail tree. A tail tree is visualized
with a tail tree plot and with a tail frequency plot, and a tail tree defines
a segmentation of the data which may be used to enhance a grand tour,
graphical matrices, and parallel coordinate plots.

The method is designed for visualizing dependency among several vari-
ables, whereas many of the previously used visualization tools are more di-
rected to finding and visualizing clusters in the data. In some cases one can
assume that the data does not contain clusters. This is typically the case for
example for data consisting of financial returns. Then one is interested in the
dependence structure and not interested in finding clusters. If one cannot
exclude the possibility of clusters a priori, then one should explore the exis-
tence of clusters with other methods (projections, parallel coordinate plots,
graphical matrices), and possibly divide data to clusters before applying tail
trees.

A tail tree is a tree whose nodes are associated with the observations so
that the root node corresponds to a central observation and the nodes in the
upper levels of the tree correspond to the observations lying in the tails of
the data. If the data is not spherically symmetric but has separated tails,
then a tail tree has many branches, each branch corresponding to a separate
tail of the data.

A tail tree plot consists of d scatter plots, where the x-coordinate of the
ith scatter plot corresponds to the ith coordinate of the observations, and the
y-coordinate of the scatter plots gives the Euclidean distance of the obser-
vations from the center point. We visualize in each scatter plot the tail tree
by connecting the observations with straight lines, and use colors to identify
the branches of the tail tree among the d scatter plots. A tail tree adds a
structure to the data which makes it possible for humans to detect important
features in the data. A basic idea behind a tail tree plot is that a tail tree
may be considered as a spatial tree (1D curve in the d-dimensional Euclidean
space which has branches) and 1D curves in the d-dimensional space may be
visualized with d projections to the coordinate axes.

We concentrate in this article on the visualization of the data with tail tree
plots, but a tail tree is potentially very useful in defining further visualizations
and in enhancing other visualization tools.

2



We define a tail frequency plot which visualizes the heaviness of the tails
separately in each tail of the point cloud. This visualization is useful when
the underlying distribution has anisotropic tails.

A tail tree defines a segmentation of the data. The segmentation may be
used to define a coloring of the observations. The coloring helps the orien-
tation during a grand tour and makes the patterns in a parallel coordinate
more visible. In addition, the segmentation of the data may be used to define
a permutation of the data which reveals patterns when one uses a graphical
matrix to visualize the data.

In Section 2 we define a tail tree. In Section 3 we define a tail tree plot.
Section 4 contains examples of tail tree plots. In particular, in Section 4.3
we analyze a financial data set with tail tree plots. Section 5 introduces a
tail frequency plot. Section 6 defines the segmentation of the data induced
by a tail tree. Section 7 compares tail tree plots to shape trees, parallel
level plots, parallel coordinate plots, graphical matrices, and to projections
and slices. In addition, tail trees are applied to enhance graphical matrices
and parallel coordinate plots. Section 8 contains a discussion. Appendix A
defines copulas and marginal distributions.

Computations of the article have been made with an R-package ”den-
pro”, which may be downloaded from http://denstruct.net. We will use the
convention that the individual frames of a figure are labeled with a, b, c, and
d, starting from left to right.

2 Tail trees

A tail tree is defined with the help of a tail clustering of the data. We find
tail clusters of the data when we remove central data points and then cluster
the remaining observations. However, tails may appear at different distances
and there is no distinguished rule for choosing the number of central points
to be removed. Instead, we may consider a sequence of balls of increasing
radius, and make a tree structure of clusters by clustering at each step the
observations in the complement of a ball of the sequence.

Figure 1(a) shows a scatter plot of data of size 2000, generated from the
distribution whose copula is the Clayton copula with parameter θ = 4, and
whose marginals have the Student distribution with degrees of freedom 4 (for
definitions, see Appendix A). This data may be said to contain three tails.
Figure 1(b) shows the remaining observations when we have removed the
observations inside a ball of radius 2. At this stage there are 2 tail clusters.
Figure 1(c) shows the three most distant tail clusters. Now we have removed
the observations inside a ball of radius 6.5.
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Figure 1: Frame a) shows a data set with three tail clusters, and the other
frames show the data after removing central observations.

2.1 Connected sets and single linkage clustering

We define the concepts of ρ-separated sets and a ρ-connected set for sets of
possibly finite cardinality.

Definition 1 (ρ-separated sets and a ρ-connected set.)

1. Sets A, B ⊂ Rd are separated for the resolution threshold ρ ≥ 0 (ρ-
separated), if for each x ∈ A and y ∈ B, ‖x − y‖ > 2ρ, where ‖ · ‖ is
the Euclidean norm.

2. Set A ⊂ Rd is connected for the resolution threshold ρ ≥ 0 (ρ-connected),
if for every nonempty B, C such that A = B ∪ C, B and C are not
separated for the resolution threshold ρ.

In other words, a set is connected if it cannot be written as a union of
two separated sets. When ρ > 0, then set A is connected for the resolution
threshold ρ if for each x, y ∈ A, there is a path z1, . . . , zm ∈ A so that
z1 = x, zm = y and ‖zi − zi+1‖ ≤ 2ρ for i = 1, . . . , m − 1. A set of finite
cardinality is ρ-connected if the union of balls, centered at the elements, with
radius ρ, is 0-connected. (That is why we use distance 2ρ in the definition of
separated sets.) For a set of cardinality n we have a finite sequence intervals
[0, ρ1), . . . , [ρn−1,∞), so that when ρ ∈ [ρk−1, ρk), k = 1, . . . , n, ρ0 = 0,
ρn = ∞, the set has n − k + 1 connected components which are pairwise
separated. We call values ρ1, . . . , ρn−1 the critical resolution thresholds.

The single linkage clustering partitions a finite set to separated sets in the
sense of Definition 1. The single linkage clustering is an agglomerative hier-
archical clustering algorithm, where the distance between clusters is defined

4



to be the distance between the closest pair of data points in the clusters.
In fact, the hierarchical clustering tree (dendrogram) with the single link-
age agglomeration gives the sequence ρ1, . . . , ρn−1 of the critical resolution
thresholds. We build the hierarchical clustering tree by finding the 2 closest
observations, and joining them together into a cluster. The distance between
the 2 closest data points is equal to 2ρ1. At step k, k = 1, . . . , n− 1, we find
the 2 closest clusters among the set of n − k + 1 previously found clusters,
and join these clusters together. The distance between these 2 closest clus-
ters is equal to 2ρk. Finally at step n − 1 we merge together the remaining
2 clusters, and the distance between these clusters is equal to 2ρn−1.

2.2 Definition

A tail tree is defined for sets of finite cardinality. We do not grow a sequence
of balls with continuosly increasing radius as in Figure 1: since the data has a
finite cardinality we may remove observations from the data set one in time.
We start at a center point of the data, and remove observations in the order
determined by the closeness to the center point. At each step we cluster the
remaining observations.

Definition 2 (Tail tree.) Assume that set A = {x1, . . . , xn} ⊂ Rd is con-
nected for resolution threshold ρ > 0. A tail tree of data set A, associated
with a resolution threshold τ ≥ ρ, and with center point µ ∈ Rd, is a tree
where each node is associated with a subset of A and with one observation.

1. The tree has a single root node, and the root node is associated with set
A itself, and with the observation closest to the center point µ.

2. Let node m be associated with set B ⊂ A.

(a) If B contains only one observation x ∈ A, then node m is a leaf
node, associated with set B = {x} and observation x.

(b) Otherwise, let x = argminy∈B‖y − µ‖ be the closest point in B to
center point µ. Write

B \ {x} = C1 ∪ · · · ∪ CM (1)

where sets Ci are pairwise separated, and each is connected, with
the resolution threshold τ . Then node m has M children, which are
associated with sets Ci and observations ci = argminy∈Ci

‖y − µ‖,
i = 1, . . . , M .
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Figure 2: Frame a) shows a tail tree of the data in frame b). The coloring
of the nodes helps to find the corresponding observations in the scatter plot.

We choose in this article the center point to be the mean: µ = n−1
∑n

i=1 xi.
An other possibility is to use some concept of a multivariate median, defined
in terms of a data depth, see Liu, Parelius and Singh (1999).

Figure 2(a) shows a tail tree of the data in frame b), which is the same
data as in Figure 1(a). The resolution threshold is ρ = 1.1 and the center
point is (0.026, 0.031). The nodes in the tail tree are plotted at the height
which is equal to the Euclidean distance of the corresponding observation
from the center point.

Figure 3 gives a step by step illustration of Definition 2. We have drawn
the data points as colored bullets. In the first window we have drawn a
circle of radius ρ = 0.75 around each observation, and one sees that the
set of observations is connected for resolution threshold ρ. The center point
is chosen to be the origin. In the second window we have removed the
circles around the 2 closest observations to the center, and one sees that the
set of the remaining observations consists of 3 separated components. The
rightmost component consists of a single red observation and this observation
corresponds to the leaf node T4. In the third window we have removed the
circle around the other but the two furthest observations. These two furthest
observations correspond to the leaf nodes T1 and T2. In the 4-th window we
show the tail tree of the data set.

To calculate a tail tree we may apply the LeafsFirst algorithm with
the bounding box enhancement. This algorithm was introduced in Klemelä
(2006) for calculating shape trees, and we can modify the algorithm to calcu-
late a tail tree. The algorithm starts by ordering the observations according
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Figure 3: An illustration of Definition 2 of a tail tree. Frames a-c) show the
data and frame d) shows a tail tree of the data set.

to the distance from the center point. Then one goes through the observa-
tions starting from the most distant observation, and at each step one checks
whether the current observation touches some previously found connected
components. If it touches several previously found connected components,
then one joins together those components. One keeps record of the bounding
boxes of the components. When an observation does not touch the bound-
ing box of a component, then it does not touch any observations inside the
bounding box, and only when the observation touches the bounding box,
one has to go deeper in the nested sequence of bounding boxes to find out
whether the observation touches some of the observations belonging to the
component. The number of flops in the worst case is O(dn2), but with the
bounding box enhancement one achieves considerable savings in typical cases.
When we apply the LeafsFirst algorithm, we do not have to find beforehand
a resolution threshold which would make the data set connected. When the
data set is not connected the algorithm gives as an output a tree with several
root nodes.

3 Tail tree plot

We have defined a tail tree as a tree whose nodes are associated with obser-
vations. We may consider a tail tree as a spatial tree (discrete curve, having
branches, in the d-dimensional Euclidean space). Thus we may visualize this
tree by plotting each coordinate separately.
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Figure 4: A tail tree plot of the data in Figure 1(a).

Definition 3 (Tail tree plot.) A tail tree plot of data A = {x1, . . . , xn} ⊂ Rd

is a visualization of a tail tree of data, as defined in Definition 2. A tail tree
plot consists of d windows. The nodes of the tree are drawn as bullets.

1. The horizontal position of a node in the i-th window, i = 1, . . . , d, is
equal to the i-th coordinate of the observation associated with the node.

2. The vertical position of a node is equal to the distance of the observation
associated with the node to the center point,

3. The parent-child relations are expressed by lines joining the parent with
its children.

We add colors to the plot to identify the branches across different win-
dows. We choose first distinct colors for the leaf nodes and then travel
towards the root node, changing the color always when two branches are
merging. We color also the lines joining a child and a parent. The color of a
line will be the same as the color of the child node. As an additional help in
identifying the nodes across the windows one may also label the leaf nodes
with numbers or letters.

Figure 4 shows a tail tree plot of the data in Figure 2(b) and in Fig-
ure 1(a). The tail tree plot shows the three tails of the data and one sees
that the south-west tail (blue branch) is much thinner than the north-east
tail (orange branch). The red and green branch have different positions in the
two windows and this visualizes the different locations of these tails. Figure 5
shows a tail tree plot of the data in Figure 3.
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Figure 5: A tail tree plot of the data in Figure 3.

4 Examples

4.1 Ellipsoids

Orientation. A ball looks like a triangle in a tail tree plot. Ellipsoids have
two tails and thus tail trees of ellipsoidal point clouds have typically two
branches. Figures 6 - 8 show a series of rotated 2D ellipses. We have rotated a
sample of size n = 2000 which is generated from the 2D Gaussian distribution
whose marginal standard deviations are 1 and 2, and the correlation is 0. The
tail tree plot in Figure 6 shows that the observations in the blue branch have
large values in the first coordinate and small values in the second coordinate,
which means that this branch lies in the south-east direction. The tail tree
plot in Figure 7 shows that the observations in the blue branch have small
values in both coordinates which means that this branch lies in the south-
west direction. In Figure 8 the first window of the tail tree plot shows that
the two branches have the same location with respect to the 1st coordinate
(we distinguish the branches only through the coloring of the nodes). The
second window of the tail tree plot shows that the locations of the branches
differ in the second coordinate, the other lying in the south and the other in
the north.

Four dimensional ellipsoids. Figure 9 shows a tail tree plot of a 4D
Gaussian point cloud of size n = 2000, when the marginal standard deviations
are 2.5, 2, 1.5, and 1, and the correlations are 0.25. The first direction shows
the 2 extensions of the ellipsoid, and in the other windows one sees how the
triangular shape is slowly vanishing, and in the 4th window it has almost
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Figure 6: A tail tree plot of a 2D ellipsoidal point cloud; from the south-east
to the north-west orientation.
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Figure 7: A tail tree plot of a 2D ellipsoidal point cloud; from the south-west
to the north-east orientation.
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Figure 8: A tail tree plot of a 2D ellipsoidal point cloud; from the south to
the north orientation.
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Figure 9: 4D Gaussian point cloud when the marginal standard deviations
are 2.5, 2, 1.5, and 1, the correlations are 0.25, and the sample size is n =
2000.
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Figure 10: 4D Gaussian point cloud when the marginal standard deviations
are 5, 2, 1.5, and 1, the correlations are 0.25, and the sample size is n = 2000.

completely vanished.
Figure 10 shows a tail tree plot of a 4D Gaussian point cloud of size

n = 2000, when the marginal standard deviations are 5, 2, 1.5, and 1, and
the correlations are 0.25. The standard deviation is much larger in the first
coordinate, and the triangular shape is not clearly visible in the coordinates
2−4: the ellipsoid is so thin that it is cutted to two halves by a ball of small
radius.

4.2 Copulas

Copulas and marginal distributions are defined in Appendix A.

Elliptical copulas. Figure 11 shows a sample of size n = 1000 from the
distribution whose marginals are two independent Student distributions with
degrees of freedom 4, that is, the distribution has the Gaussian copula with
shape parameter (correlation coefficient) r = 0, and Student marginals. We
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Figure 11: Gaussian copula with shape parameter r = 0, Student marginals
with degrees of freedom 4, n = 1000 observations, the resolution threshold
of the tail tree is ρ = 1.5.

show a scatter plot and a tail tree plot. The data has 4 tails along each
coordinate half-axis. The red and orange tails have the same x-coordinates,
and the green and blue tails have the same y-coordinate, and the tails are
distinguished with the coloring in the tail tree plot.

Figure 12 shows a sample of size n = 1000 from the distribution which has
the Gaussian copula with shape parameter r = 0.5, and Student marginals
with degrees of freedom 3. The data has 4 tails which are not exactly along
the coordinate axis, due to the positive shape parameter of the Gaussian
copula.

Figure 13 shows a sample of size n = 1000 from the distribution which has
the Student copula with shape parameter r = 0.6, and standard Gaussian
marginals. The data has 4 sharp tails, which lie along the diagonals between
the coordinate axis. The tails lie close together in the tail tree plot, since
the red and the orange tails have the same x-coordinate, and so have the
blue and the green tails, whereas the red and the blue tails have the same y-
coordinate, similarly as the orange and the green tails. The colors distinguish
the separate tails in the tail tree plot.

Archimedean copulas. Figure 14 shows 1000 observations from the dis-
tribution with the Clayton copula with parameter 4, and the standard Gaus-
sian marginals. The dependence is greater in the blue tail, and the tail tree
plot shows this tail as a narrower tail than the red tail.

Figure 15 shows 1000 observations from the distribution with the Gumbel
copula with parameter 3, and the standard Gaussian marginals. As for the
Clayton copula the dependence is greater in the blue tail. However, the red
tail is not spreading so wide at the extreme tail as in the case of the Clayton
copula. In the tail tree plot one sees how the red tail has an arrow-like shape,
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Figure 12: Gaussian copula with shape parameter r = 0.5, Student
marginals with degrees of freedom 3, n = 1000 observations, the resolution
threshold of the tail tree is ρ = 1.6.
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Figure 13: Student copula with shape parameter r = 0.6, standard Gaussian
marginals, n = 1000 observations, the resolution threshold of the tail tree is
ρ = 1.
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Figure 14: Clayton copula with parameter 4, standard Gaussian marginals,
1000 observations, the resolution threshold of the tail tree is ρ = 1.
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Figure 15: Gumbel copula with parameter 3, standard Gaussian marginals,
1000 observations, the resolution threshold of the tail tree is ρ = 1.

whereas the red tail in the tail tree plot of the Clayton copula has almost
uniform wideness.

Figure 16 shows 2000 observations from the distribution with the Frank
copula with parameter 5, and the standard Gaussian marginals. The two
tails of the Frank copula are wider than in an ellipse, as can be seen by
comparing Figure 16 with the ellipse in Figure 7.

4.3 Currencies

Figure 17 shows a tail tree plot of relative changes of exchange rates of
the Danish Kroner, Swedish Kronor, Norwegian Kroner, and British Pound.
The daily exchange rates are measured with respect to one U.S. Dollar and
converted to returns (ri 7→ (ri − ri−1)/ri−i). The data covers the period
from 1971-01-04 to 2006-04-15. There are n = 8854 observations and the
dimension is d = 4. The data is from Federal Reserve Economic Data
(http://research.stlouisfed.org).

A useful technique in exploratory data analysis is to compare visualiza-
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Figure 16: Frank copula with parameter 5, standard Gaussian marginals,
2000 observations, the resolution threshold of the tail tree is ρ = 1.1.
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Figure 17: A tail tree plot of relative changes of exchange rates of Danish
Kroner, Swedish Kronor, Norwegian Kroner, and British Pound during the
period from 1971-01-04 to 2006-04-15. (Some colors are repeated.)
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tions of real data to visualizations of simulated data. Figure 17 has similari-
ties with tail tree plots of data whose distribution has Gaussian copula with
the correlation parameter r ≈ 0.5, and with Student marginals. Simulated
data of this type is visualized in Figure 12. The data of this type has a
tail in each coordinate direction and two tails due to dependence. In the 4
dimensional case there would be 10 tails (8 tails in the coordinate directions
and 2 tails due to dependence).

In Figure 17 one sees the tails due to dependence (blue+turquoise tail is
at the negative orthant and the black+yellow tail is at the positive orthant).
One sees the tails along the coordinate axis for Danish Kroner (green and
blue), for Swedish Kronor (red and gray), and for Norwegian Kroner (green
and black). For the British Pound one sees rudiments of the tails, although
these are not present in the tail tree structure.

The tail tree plot of Figure 17 has the resolution threshold ρ = 0.01, and
for this resolution threshold there are 6 outliers (observations which are not
ρ-connected to the other observations). Three of the outliers are large moves
in the Swedish Kronor.

In conclusion, the visualization with a tail tree plot indicates that the
Gaussian copula with Student marginals is a promising model for the relative
changes in exchange rates.

5 Tail frequency plot

A tail frequency plot visualizes the heaviness of the tails of the underly-
ing distribution. In the multivariate case the tails of the distribution may
have anisotropic heaviness: the tails decrease at different rates in different
directions. For the elliptical distributions the density has isotropic tails, de-
termined by the 1D generator function,but in the general case the tails are
anisotropic.

The nodes of a tail tree are associated with subsets of the data. A tail
frequency plot visualizes a tail tree so that each node of the tree is drawn as
a line whose length is proportional to the number of observations in the set
associated with the node. In fact, we identify the lines as level sets of a 1D
function.

Definition 4 (Tail frequency plot.) A tail frequency plot of data A =
{x1, . . . , xn} ⊂ Rd is a visualization of a tail tree of data, as defined in
Definition 2. A tail frequency plot is a plot of a 1D piecewise constant func-
tion, which is defined by associating a separated component of a level set to
each node of the tail tree: (1) the length of the separated component of a level
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Figure 18: Frame a) shows a tail frequency plot of the tail tree in Figure 2(b),
and in Figure 1(a). Frame b) zooms into the function. Frame c) shows a tail
frequency plot of the tail tree in Figure 3.

set is equal to the number of observations in the the node, (2) the height of
the separated component of a level set is equal to the distance of the closest
observation from the center point, among all observations associated with the
node, and (3) the separated components of level sets are nested according to
the parent-child relations.

A more formal definition may be given in terms of function generating
trees, defined in Klemelä (2006).

The modes of a tail frequency function correspond to the branches in a
tail tree plot. We may show the corresponcence by labeling the modes and
by coloring the graph of the tail frequency function.

Figure 18(a) shows a tail frequency plot of the data of size n = 2000 in
Figure 2(b). The corresponding tail tree plot is shown in Figure 4. The tail
frequency function has three modes, and the size of the modes visualizes the
number of observations in each tail. Frame b) zooms into the function show-
ing details of the red and green mode. Figure 18(c) shows a tail frequency
plot of the tail tree in Figure 3(d) and in Figure 5. There are 11 data points.
The tail frequency plot shows the four tails of the data.

6 Segmentation of data

Tail trees may be used to define a partition of the data. One may apply
the partition to enhance parallel coordinate plots, graphical matrices, and a
grand tour. This is illustrated in Sections 7.3-7.4.

A segmentation of the data, corresponding to a tail tree, is such that the
observations corresponding to the nodes which are in the same branch belong
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to the same segment: a child of node m belongs to the same segment as m
if it does not have siblings (it is the only child), otherwise the children of m
are the starting nodes of new branches and thus each is a starting node of a
new segment.

The segmentation induced by a tail tree is illustrated in Figure 2, where
the 5 segments are colored in the tree structure and in the scatter plot. Also,
the scatter plots in Sections 4.1-4.2 illustrate the segmentation induced by a
tail tree: the segments are colored with separate colors in these scatter plots.

7 Comparison with other methods

7.1 Shape trees

The concept of a tail tree is related to the concept of a shape tree as de-
fined in Klemelä (2006). A shape tree was defined for a connected set, when
the connectedness was defined by taking the resolution threshold ρ = 0 in
Definition 1. We have modified that concept of a shape tree in order to visu-
alize sets of finite cardinality. Our approach is analogous to the approach of
computational topology, see Robins, Abernethy, Rooney and Bradley (2004).

A shape tree may be applied to visualize level sets of a density estimate,
but with tail trees we may visualize the raw data, avoiding the density esti-
mation step. Since density estimation is difficult in high dimensional cases
we may be able to analyze higher dimensional data with tail trees than with
shape trees. In addition, sometimes a part of the data arises from a dis-
crete distribution so that there does not exist an underlying density for the
complete data.

Tail probability plot. It is of interest to define a population concept cor-
responding to a tail frequency plot, defined in Definition 4. The population
concept may be defined with the help of a shape tree. A shape tree was
visualized in Klemelä (2006) with a radius plot, which visualizes a shape tree
so that a node of a shape tree is identified with a separated component of a
level set of a 1D function, and the length of the separated component of a
level set is proportional to the volume of the set associated with the node.
We get a tail probability plot when we choose instead the length of a sepa-
rated component of a level set to be equal to the probability content of the
set associated with the node. When a shape tree corresponds to a low-level
level set (or the support) of the underlying density, then a tail frequency plot
is an empirical version of the tail probability plot.
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7.2 Parallel level plots

In parallel level plots one introduces a new dimension to the point cloud,
called “level”. Each observation is attached with a level and one makes d
parallel scatter plots from each coordinate together with the level. Thus we
identify the observations across the scatter plots through the value of the
level of the observations.

Definition 5 Parallel level plot of data x1, . . . , xn ∈ Rd, associated with a
level mapping level(xi) ∈ R, consist of d windows, where the k-th window,
k = 1, . . . , d, shows a scatter plot of points (xi

k, level(x
i)), i = 1, . . . , n.

Typically the level mapping should satisfy level(xi) 6= level(xj), when i 6=
j, i, j = 1, . . . , n, which makes the unique identification of the observations
across the windows possible. For multivariate time series data parallel level
plots have been common: one takes the level of data points to be their time
index. Also, one dimensional curves in the d-dimensional Euclidean space
may be visualized naturally with parallel level plots by taking the parameter
of the curve to be the level.

When visualizing general point clouds the usefulness of a parallel level
plot depends on the choice of the level. Figure 19(a) shows a scatter plot of
a data with 4 tails and frames b-c) show the same data with a parallel level
plot where we have attached a unique random level in {1, . . . , 1000} to each
observation (the level is the index of the observation). The scatter plot and
the parallel level plot of contain the same information but the scatter plot lets
a human eye to detect the pattern of 4 tails in the data. A natural choice for
the level is the distance from a center point, say, from the arithmetic mean.
Figure 20(a)-(b) shows a parallel level plot of the data in Figure 19 when we
choose the level to be the distance from the arithmetic mean. Figure 20(a)-
(b) indicates that there are at least 2 tails in the data, but the fact that there
are 4 tails is only revealed when we draw a tail tree plot, which is shown in
frames c-d). The 4 tails of the data are shown as 4 branches of the tail tree,
colored with black, red, blue, and green. The tail tree plot adds a sufficient
structure to the visualization making it possible for humans to detect the 4
tails in the data.

7.3 Graphical matrices

A graphical matrix is a n × d matrix of graphical elements; a n × d data
matrix of real numbers is transformed by representing each real number by a
graphical element. Graphical matrices were studied by Bertin (1967), Bertin
(1981). There are many ways to code real numbers with graphical elements.
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Figure 19: Window a) shows a scatter plot of a data of size 1000 generated
from a mixture of two Gaussian distributions. Windows b-c) show a parallel
level plot of the data in frame a), with the indeces of the observations as the
level.
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Figure 20: Windows a-b) show a parallel level plot of the data in Figure 19
with the distance from the arithmetic mean as the level. Windows c-d) show
a tail tree plot of the data. The resolution threshold is ρ = 0.65.
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Figure 21: Window a) shows a scatter plot of 5 points, and window b)
shows a graphical matrix of the data. Window c) shows a scatter plot with 7
segments colored, and window d) shows a graphical matrix of the data, when
the permutation is given by the tail tree of Figure 20(c)-(d).

Figure 21(a) shows a scatter plot of 5 observations and frame b) shows one
type of graphical matrix of this data. We have drawn each observation as a
circle which is connected with a line to the arithmetic mean of the coordinate.
This graphical matrix is identical with a parallel level plot, where the level
is the index of the observation, and when we delete the lines and keep only
the circles.

The usefulness of a graphical matrix depends on whether one can find an
informative permutation of the rows/observations (and of the columns/va-
riables). Similarly to the parallel level plot in Figure 19(b)-(c), a random
permutation leads typically to useless graphical matrices. A suggestion of
Bertin (1981) is to order indeces so that the values of one variable are in a
monotonic order.

Tail trees may be used to find a useful permutation with the help of the
segmentation defined in Section 6. One chooses a permutation where the
observations which belong to the same segment are grouped together in the
graphical matrix.

Figure 21(c) shows a colored scatter plot of the data in Figure 19. The
segments induced by the tail tree in Figure 20(c)-(d) are colored. Figure 21(d)
shows a graphical matrix where we have used a permutation corresponding
to the segmentation in frame c). The observations belonging to the same
segment are grouped together, and the observations are ordered inside a
group according to the distance to the arithmetic mean of the complete
data. The four tails are well visualized. For example, the black “flag” in the
graphical matrix points to the left in the column of the first coordinate, and
to the right in the column of the second coordinate. Thus we know that this
tail lies in the north-west direction from the center.
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Figure 22: Frame a) shows a parallel coordinate plot of the data in Figure 19.
Frame b) shows a parallel coordinate plot where the lines and points are
colored according to the segmentation of the tail tree in Figure 20(c)-(d).

7.4 Parallel coordinate plots

Parallel coordinate plots were introduced by Inselberg (1985) and Wegman
(1990). Parallel coordinate plots resemble parallel level plots: in both cases
one visualizes 1D projections of the data at the coordinate axis, and uses a
method to identify the observations among the d projections. In the case of
parallel coordinate plots one identifies the observations among the projections
by joining the observations with straight lines.

The segmentation of the data induced by a tail tree, defined in Section 6,
may be used to enhance parallel coordinate plots. Figure 22(a) shows a
parallel coordinate plot of the data in Figure 19. Frame b) shows a colored
parallel coordinate plot, where the lines and points are colored according to
the segmentation induced by the tail tree in Figure 20(c)-(d).

Parallel coordinate plots provide a more compact visualization of the data
than parallel level plots. Consequently, parallel coordinate plots suffer more
from overplotting. Indeed, the lines connecting the observations introduce
more ink to the plot. In contrast, parallel level plots introduce a new variable
to the plot (level), and spread the observations with the help of the new vari-
able, thus diminishing the problem of overplotting. One may also decrease
the problem of overplotting with parallel coordinate density plots, see Miller
and Wegman (1991).

7.5 Projections and slices

The segmentation induced by a tail tree, defined in Section 6, may be used to
enhance projections of multivariate point clouds: one colors the observations
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so that the observations in the same segment have the same color. This
coloring technique has been used in the scatter plots of Sections 4.1-4.2.
When one takes a grand tour along the projections of the data this kind of
coloring may be extremely helpful. A grand tour is defined in Asimov (1985).

Projections may be excellent in visualizing clusters in the data. When we
are interested in the dependence between the variables, then tail tree plots
may provide good dimension insensitive alternatives to projections.

7.6 Spatial trees

A tail tree is a spatial tree (a tree which generates a branching curve). These
are trees whose every node is associated with a vector of d real numbers and
with a real valued height, so that the height of a child is larger than the
height of the parent. Also a minimal spanning tree and a shortest path tree
are spatial trees, when we define the height of the nodes properly. Thus we
may visualize these trees with similar plots as a tail tree plot. Friedman and
Rafsky (1981) propose to visualize a minimal spanning tree by plotting the
data in 2D so that the n − 1 edge lengths are preserved, and showing in the
plot the lines connecting the observations.

7.7 Database exploration

Database exploration in Keim and Kriegel (1994) has some similarities with
tail tree plots. Their center point is determined by the user (as a query to
the data base), whereas we calculate the center point with an algorithm (as
the artihmetic mean). They sort the data points according to a distance
to the center point. The center point is drawn at the center of the display
and the other data points are arranged on a rectangular spiral originating
from the center point. The distances to the center point are visualized with
colors. In addition, an own display is dedicated for each coordinate. The
position of the data points in the coordinate displays is the same as in the
main display, but the coloring is determined by the univariate distance in the
given coordinate from the observation to the center point. (A coordinate is
also called a “dimension” or “predicate”.)

A weakness of database exploration might come from the fact that colors
are not well suited for expressing quantitative information like distances. We
have expressed distances by using scatter plots where the y-coordinate gives
the overall distance and the x-coordinate gives the univariate distance in the
given coordinate, and colors are used to express nominal information (the
labeling of the tails).
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8 Discussion

A tail tree is a tree structure among the observations. It is a useful data
structure which can be applied to enhance many visualization tools: it can
be applied with scatter plots (grand tour), parallel coordinate plots, and
with graphical matrices. A tail tree plot is a visualization technique which
is tailored for the visualization of tail trees. It has some advantages over
other methods: it is a dimension insensitive tool, it may be used to visualize
dependence and anisotropic tails, and it is not severely affected by overplot-
ting.

Graphs may be used in two different ways: to communicate information
to an audience and to analyze data. Graphs used for communications (pre-
sentation graphs) tend to be simple and are mainly intended for the display
of discovered patterns. Graphs used for analysis may be quite detailed, com-
plicated, or esoteric, containing most or even all of the original data, and are
tools for the detection of important or unusual features in the data. (Spence
and Lewandowsky (1990), pages 19-20) Tail tree plots may be used to ana-
lyze data. We believe that tail tree plots have intuitive appeal which makes
them useful also for presentation purposes.
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A Copulas and marginal distributions

We define shortly the mathematical concepts of copula and marginal dis-
tribution. Distribution function F may be decomposed into a part which
describes the dependency and into a part which describes the marginal dis-
tributions. We call a copula the part which describes the dependency. The
word “copula” is a latin word which means a “link”, “tie”, or “bond”. The
basic idea is that any distribution function F : Rd → R of a random vector
(X1, . . . , Xd) may be written as F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), where
C is the copula and Fi, i = 1 . . . , d, are the marginal distribution functions:
Fi(xi) = P (Xi ≤ xi). A copula is a function C : [0, 1]d → [0, 1] which links
univariate marginals to their multivariate distribution. We may construct
parametric and semiparametric families of multivariate distributions by giv-
ing separately a model for the dependency and separately a model for the
marginal distributions. Typical copulas include the Gaussian copula, Student
copula, Clayton copula, Gumbel copula, and Frank copula. The definitions
of the copulas can be found for example in Nelsen (1999). Typical marginal
distributions include the Gaussian and Student distributions. The standard
Gaussian distribution has density c exp{−t2/2} and the Student distribution
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has density c(1 + t2/ν)−(ν+1)/2, where c is a normalization constant and ν
is a parameter (degrees of freedom). The Student distribution has heavier
tails than the exponetially decreasing tails of a Gaussian distribution, and
is suited for describing phenomena where extreme events happen with high
probability.
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B Supplementary material

B.1 Tail tree

Decoration of a tail tree. A node of a tail tree is associated both with
an observation and with a subset of the observations. We may always define
the other decoration in the terms of the other. Let us denote with set(m)
the set associated with node m in a tail tree of the data, and let us denote
with obs(m) the observation associated with the node. We may write a set
associated with node m as

set(m) =
⋃

{obs(c) : c = m or c is a descendant of m} .

We may write the observation associated with a node m as:

obs(m) =

{

set(m) \
⋃

{set(c) : c is a child of m} , m a non-leaf node,
set(m), m a leaf node,

where we use the convention {x} = x, where x ∈ Rd. The decoration with
observations is used to define a tail tree plot and the decoration with subsets
of observations is used to define a tail frequency plot.

Other clustering distances. The definition of separated sets in Defini-
tion 1 may be rephrased in the following way: sets A, B ⊂ Rd are separated
for the resolution threshold ρ ≥ 0, if D(A, B) > 2ρ, where D(A, B) =
inf{‖x − y‖ : x ∈ A, y ∈ B} is the single linkage distance between two
sets. The concept of separated sets is the fundamental underlying concept
in the definition of a tail tree, and it is natural to ask whether the sin-
gle linkage distance may be replaced by some other distance between sets,
to get other versions of a tail tree. Indeed, each hierarchical agglomera-
tive clustering algorithm is based on some concept of a distance D(A, B)
between sets A, B ⊂ Rd, where the distance need to be defined only for
sets of finite cardinality. For example, the complete linkage clustering uses
the distance D(A, B) = sup{δ(x, y) : x ∈ A, y ∈ B}, where δ is typically
the Euclidean distance, and the average linkage clustering uses the distance
D(A, B) = (#A · #B)−1

∑

x∈A,y∈B δ(x, y), where A and B have finite cardi-
nality. The essential condition for the definition of a tail tree to be meaningful
is the following.

When A, B ⊂ Rd are ρ-separated and A0 ⊂ A, B0 ⊂ B,

then sets A0 and B0 are ρ-separated. (2)
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Indeed, when we build a tail tree, we are at each step removing observations
from the original set. If the condition (2) is violated it may happen that
after two branches have been separated, they may later join again, after more
observations have been removed. In this case we are building a graph which
is not a tree. These kinds of graphs may indeed be useful in visualization and
segmentation, but we don’t study these graphs in this article. The distances
of the complete linkage clustering and the average linkage clustering do not
satisfy condition (2), when δ is the Euclidean distance.

Tail clustering. In density based clustering, or mode clustering, clusters
are defined in terms of the underlying density as regions of high density
separated from other such regions by regions of low density. Tail clusters
may be defined as regions of low density separated from other such regions
after removing the regions of high density and regions of zero density (or
regions of extreme low density). Tail clustering may be used in the cases
where the underlying distribution is unimodal. For example, one might want
to cluster a data base of customers in order to concentrate marketing efforts
to specific groups, which may lie in the tails of the distribution.

A conceptually natural approach to density based clustering finds a tree
structure of nested clusters, corresponding to the level set tree of the under-
lying density, see Stuetzle (2003) Klemelä (2004), and also Ankerst, Breunig,
Kriegel & Sander (1999). Tail trees provide an analogous approach to tail
clustering, since they find a nested sequence of tail clusters.

Tail tree clustering has similarities with divisive hierarchical clustering (as
opposed to agglomerative hierarchical clustering), since both start with the
complete data and extract clusters recursively. However, divisive clustering
makes a partition of the data, but in a tail tree the number of observations
is decreasing at each step. Dendrograms (hierarchical clustering trees) in
general make a recursive partition of the observations, so that the union of
the sets associated with children is always equal to the set associated with
the parent, and thus dendrograms have a different structure than tail trees.

In this article we are interested in tail clustering as a tool to visualize
data, and are not interested in other applications of tail clustering.

B.2 Tail tree plot

Tail tree plots versus scatter plots. Figure 23 shows how points in
a scatter plot correspond to nodes in a tail tree plot. Figure 23(a) shows
points inside a unit ball, Figure 23(b) shows images of these points under
the mapping (x1, x2) 7→ (x1, (x

2
1 + x2

2)
1/2). The points on the x-axis (the

green points in the 1st window) are mapped on a wedge in the x-window of
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Figure 23: Frames a-b) show that horizontal lines are mapped to (smoothed)
wedges in the x-window of a tail tree plot. Frame c) shows that horizontal
lines are mapped to vertical lines in the y-window of a tail tree plot. Frames
d-e) show that spheres are mapped to horizontal lines.

the tail tree plot, and the points parallel to the x-axis are mapped to lifted
smoothed wedges. Figure 23(c) shows images under the mapping (x1, x2) 7→
(x2, (x

2
1 + x2

2)
1/2). Figure 23(d)-(e) shows that the points on spheres are

mapped to horizontal lines in a tail tree plot. Sometimes we plot the wedge
{(xi, λ) : |xi −µi| = λ, λ ≥ 0} as a dashed line in a tail tree plot, see Figures
9, 10, 26.

Overplotting. Any pixel based visualization (a scatter plot, parallel level
plot, parallel coordinate plot, graphical matrix, tail tree plot) suffers from
overplotting when the size of the data is large. Tail tree plots suffer from
overplotting in the center of the data, but in the tails of the data single
observations are distinguishable. Usually it is these “outliers” which are
most interesting and in need to be identified, whereas central observations
are not individually interesting.

One may reduce overplotting in a tail tree plot by plotting only the bullets
corresponding to the observations and leaving out the lines connecting the
observations. Often one can visualize the tree structure sufficiently well only
with the coloring of the observations.

An additional way to reduce the overplotting is subsetting. For example,
in the likelihood subsetting one plots only the points xi for which f̂(xi) ≥ λ,
where λ > 0 is a level and f̂ is a density estimate.

Colored parallel level plots. An idea behind the definition of a tail tree
plot is that 1D curves in the d-dimensional Euclidean space may be visu-
alized with coordinate functions (projections to the coordinate axes), and
1D branching curves may be visualized with projections when we add colors
to the plot to identify different branches. Figure 24 visualizes a hyperbolic
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Figure 24: A hyperbolic spiral with 3 branches. Window a) shows the
hyperbolic spiral with red. The blue branch is evolving first, then the green
branch is evolving from the blue branch, and finally the orange branch is
evolving from the red main spiral. Windows b-c) show the colored parallel
level plot; the x-axes correspond to the coordinates 1 and 2, and the y-
axes give the distance from the origin. The red curve is defined by r 7→
(r cos(1/r), r sin(1/r)), r ≥ 0.05.

spiral with 3 branches. Frame a) shows a scatter plot and frames b-c) show
a colored parallel level plot. A parallel level plot is defined in Definition 5
and a tail tree plot is closely related to a colored parallel level plot.

Spherically symmetric data. We show how spherically symmetric data
sets look in tail tree plots. In this case the shape of the point cloud is always
the same, but the spread and the location of the data may vary. Figure 25
shows three scatter plots of spherically symmetric data. We generated a
sample of size 1000 from the uniform distribution on the 2D ball, from the
2D standard Gaussian distribution, and from the 2D Student distribution
with degrees of freedom 3. Figure 26 shows the first coordinates of tail trees
of the data in Figure 25. We have chosen the resolution thresholds so that
the data sets are connected, and this required to choose thresholds 0.6, 3,
and 18.

Figure 26 shows that a ball looks like a triangle in a tail tree plot. The
bullets are always on the upper side of the wedge which is shown in Figure 26
as dashed lines. For every data set a tail tree plot has the triangle shape at the
bottom. The triangle is not filled at every sector if the data is not spherical.
For spherical data the triangle is not filled at the upper levels, except in the
uniformly distributed case. Tail tree plots visualize the spread by showing
how the observations become more sparse in the upper levels of the tail tree
plot.
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Figure 25: Three scatter plots of 1000 observations: a) uniformly distributed
data on the unit ball, b) standard Gaussian data, c) Student distribution with
degrees of freedom 3.
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Figure 26: The first coordinates of tail tree plots of the data in Figure 25
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B.3 Tail frequency plot

Coloring of a tail frequency plot. By labeling the modes of the function
in a tail frequency plot we may indicate the correspondence between the
modes of the function and the tails of the data as shown in a tail tree plot. We
may use colors to enhance the visualization of the correspondence. In a tail
tree plot every node (observation) was colored. A tail frequency plot is a plot
of a piecewise constant function, which has a finite number of distinct level
sets. These distinct level sets correspond to the nodes of the tail tree, and we
may color these level sets with the same color with which the corresponding
observation was colored. We color the whole area under the graph of the
function in such a way that a color is changed when two separated level sets
are merging.

Scale curves. In multivariate cases it is useful to study 1D spherical dis-
tribution function Gn : [0,∞) → [0, 1],

Gn(r) = n−1#{xi : xi ∈ Br(µ), i = 1, . . . , n},

where Br(µ) = {z ∈ Rd : ‖z − µ‖ ≤ r}, and µ ∈ Rd is a given center
point. Function Gn gives the empirical probabilities of an increasing sequence
of balls, and thus Gn visualizes the heaviness of the tail of the underlying
density. Liu et al. (1999) replace the balls Br(µ) with depth regions and call
the related function a “scale curve” or a “scalar form of dispersion”.

When a tail tree does not have branches, then a tail frequency plot of the
tail tree visualizes exactly the same information as function Gn. However,
when a tail tree has many leaf nodes, then a tail frequency plot visualizes
more information: it visualizes the heaviness of the tails separately for each
disconnected tail of the underlying density. Spherical distribution function
may be used for spherically symmetric densities but with the help of tail
frequency plots we may visualize anisotropic spread.

Examples of tail frequency plots. Figure 27 shows tail frequency plots
for the data sets coming from uniform, Gaussian, and Student distributions.
The data is the same as in Figure 25 and the corresponding tail tree plots
are shown in Figure 26.

Figure 28 shows tail frequency plots for Gaussian ellipsoids. Frame a)
shows a tail frequency plot of the 2D ellipses in Figures 6-8. The orienta-
tion of the data does not affect the tail frequency plots. Frame b) shows a
tail frequency plot of the 4D Gaussian data where the standard deviation
of each marginal is different. The corresponding tail tree plot is shown in
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Figure 27: Tail frequency plots of spherically symmetric data; uniform,
Gaussian, and Student. The tail frequency plots correspond to the tail tree
plots in Figure 26.
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Figure 28: Tail frequency plots of Gaussian ellipsoids; a) a 2D ellipse, b) a
4D ellipsoid with varying standard deviations, and c) a 4D ellipsoid with a
dominating standard deviation. The tail frequency plots correspond to the
tail tree plots in Figures 6-8, Figure 9, and Figure 10.

Figure 9. Frame c) shows a tail frequency plot of the 4D Gaussian data with
a dominating standard deviation. The corresponding tail tree plot is shown
in Figure 10.

Figure 29 shows tail frequency plots corresponding to the tail tree plots
in Figures 11-13 (independent Student marginals, a Gaussian copula with
Student marginals, and a Student copula with Gaussian marginals). The
modes are of so small size that we need to zoom into the graph of the function
to show the modes, and this is done in Figure 30.

B.4 Comparison to other methods

Parallel level plots versus tail tree plots. Figure 31 shows that a par-
allel level plot cannot distinguish the cases where there are 4 tails from the
cases where there are 3 tails: the parallel level plots in Figure 20(a)-(b) and
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Figure 29: Independent Student marginals, a Gaussian copula with Student
marginals, and a Student copula with Gaussian marginals; tail frequency
plots corresponding to the tail tree plots in Figures 11-13.
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Figure 30: A detailed view of the modes in the tail frequency plots of
Figure 29.
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Figure 31: The data in Figure 19 when one tail is cutted away. Window a)
shows a scatter plot and windows b-c) show a parallel level plot when the
distance from the arithmetic mean is the level.

in Figure 31(b)-(c) look similar although the latter has one tail less.
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