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Abstract

We introduce graphical tools for visualizing multivariate functions,
specializing to the case of visualizing multivariate density estimates.
We visualize a density estimate by visualizing a series of its level sets.
From each connected part of a level set we form a shape tree. A
shape tree is a tree whose nodes are associated with regions of the
level set. With the help of a shape tree we define a transformation of
a multivariate set to a univariate function. We visualize shape trees
with the shape plots and the location plot. By studying these plots one
may identify the regions of the Euclidean space where the probability
mass is concentrated. An application of shape trees to visualize the
distribution of stock index returns is presented.
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1 Introduction

One may visualize 2 dimensional functions with perspective plots and contour
plots, and 3 dimensional functions may be visualized with perspective plots
of 3D level sets. Higher than 3 dimensional functions may be visualized by
visualizing 2 or 3 dimensional slices of the original function. Density functions
may be visualized by visualizing 2 or 3 dimensional marginal densities and
in general, multivariate functions may be visualized by visualizing 2 or 3
dimensional Radon transforms of the function. Finding a series of informative
slices or marginal densities (projections) becomes increasingly difficult as the
dimension grows.

We present visualization tools which are less dimension-sensitive than the
use of slices and projections. We may visualize functions with arbitrary high
dimension – up to the availability of efficient estimators and the computa-
tional complexity. We visualize “in one step” some important characteristics
of multivariate functions, bypassing the problem of looking for informative
slices and projections. We specialize to the case of visualizing probability
density functions and in particular to the case of visualizing density esti-
mates, based on a sequence of random vectors X1, . . . , Xn ∈ Rd.

A dimension-insensitive method for the visualization of the mode struc-
ture of a density was introduced in Klemelä (2004b), where densities are
visualized by visualizing the level set tree of the density. Klemelä (2004b)
introduces the volume plot for the visualization of the relative largeness of
the modes and the barycenter plot for the visualization of the barycenters of
the level sets, in particular the locations of the modes. However, beyond the
mode structure, these plots give only a limited insight into the shape of the
density. We need additional visualization tools since also unimodal densities
may have a large variety of shapes: the probability mass is distributed only
in some regions of the huge multivariate Euclidean space.

The visualization tools which we present are based on a shape tree of a
set. We visualize a density by visualizing a series of level sets of the density.
We form a series of shape trees from a series of level sets and apply our
graphical tools to visualize the shape trees. A shape tree may be formed
from a connected set, where by a connected set we mean a set which cannot
be expressed as a union of two sets which do not touch each other. Level sets
of a unimodal density are connected. When a density is multimodal some of
its level sets, possibly at higher levels, are not connected, and in this case we
should visualize separately each connected component, or restrict ourselves
to the visualization of lower level sets.

A shape tree of a connected set is a tree which is formed by looking at
the deviations of the set from the balls centered at a given reference point,
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where the reference point is typically the location of the mode of the density,
or the barycenter of the set. The root of the tree is identified with the set
itself. The non-root nodes correspond to the separated components of the
intersection of the set with the complement of a ball centered at the reference
point.

We present two types of plots: the shape plots and the location plot. The
shape plots visualize only the shape of the set and the location plot visualizes
spatial information showing how the shape is located in the multivariate
Euclidean space.

The shape plots include the radius plot, the probability content plot, and
the volume plot. These plots are plots of 1D functions which are obtained
from the shape tree. Thus we define transforms of a multivariate set to 1D
functions. For example, a radius transform reveals basically the following
features of the set.

1. Qualitative information. The modes of the radius transform corre-
spond to the “extensions” or “tails” of the set, where with extensions
of the set we mean those parts of the set which do not fit inside a given
ball. We call a connected set “multimodal” when the radius transform
is multimodal.

2. Quantitative information.

(a) The lengths of the level sets of the radius transform are equal to
the volumes of the corresponding regions of the original set.

(b) The levels of the level sets of the radius transform are equal to the
distance of the corresponding regions of the original set from the
reference point.

The location plot visualizes the locations of the extensions of the set. In
the location plot we plot the barycenters of the sets associated with the nodes
of the shape tree.

Shape trees may be used in exploratory data analysis, in the spirit of
Tukey (1977). We propose a two step approach to be used in exploratory
data analysis: (1) first we make inference on the multimodality of the density
with the level set tree technique, as introduced in Klemelä (2004b), and (2)
second we make inference on the shape of the level sets (unimodal case) or on
the shape of the connected parts of the level sets (multimodal case), with the
shape tree technique. One may interpret this approach as a search for devia-
tions from Gaussianity: the multimodality is the most severe deviation from
Gaussianity and in the unimodal case the density deviates from a Gaussian
density when the level sets are not ellipsoids, in particular when the level
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sets have more than two modes. Multimodal densities may often be modeled
as a mixture of Gaussians with varying mode locations. “Multimodality” of
level sets may sometimes be modeled with a mixture of Gaussians with the
same mode but varying covariance matrices.

In Section 2 we define the basic concepts: Section 2.1 gives the definition
of a shape tree, Section 2.2 contains the definitions of the shape plots, and
Section 2.3 contains the definition of the location plot. In Section 3 we discuss
the choice of the parameters of the plots, visualize a collection of examples
with radius plots, and discuss the differences between using shape trees in
visualization as compared to using marginal densities and slices. In Section
4 we discuss the implementation of the tools: Section 4.1 describes an algo-
rithm for the calculation of shape trees and Section 4.2 gives an impression
of radius plots and location plots for some potentially useful multivariate
density estimators. In Section 5 we analyze a financial data set. Section 6
contains a discussion.

We use the following notations and terminology. The ball with center
µ ∈ Rd and radius r ≥ 0 is Br(µ) = {x ∈ Rd : ‖x − µ‖ ≤ r} where
‖ · ‖ is the Euclidean distance. For two sets A,B ⊂ Rd, we denote the set
difference with A \B = A∩Bc. Lebesgue measure of set A ⊂ Rd is denoted
with vol(A) = vold(A) =

∫

A
dx. We denote with IA, A ⊂ Rd, the function

for which IA(x) = 1, when x ∈ A and 0 otherwise. We denote with #P
the cardinality of a finite set P. A level set will be defined in (5) and the
barycenter of a set will be defined in (7). Term “grid of radii” denotes a set
{r0 < · · · < rL} of real numbers.

Computations and graphics in this article have been made with an R-
package ”denpro”, which may be downloaded from http://denstruct.net.
Klemelä (2004a) contains further proofs, definitions, discussion, pseudo code,
illustrations, and examples.

2 Visualization concepts and tools

We define the concept of a shape tree in Section 2.1. With the help of this
concept we define the graphical tools. Section 2.2 contains the definitions of
the shape plots and Section 2.3 contains the definition of the location plot.

2.1 Shape tree of a set

A shape tree is a tree structure associated with a connected set, with a
reference point inside this set, and with a grid of radii. The nodes of the tree
are associated with subsets of the set and with the radii in the grid. The
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tree has a single root node and we associate the root with the set itself. To
find the children of a given node, we increase the radius by one step, make
the intersection of the set associated with the node with the complement of
the ball with this new radius, and associate the children with the separated
components of this intersection.

Separated sets and a connected set. We say that sets B,C ⊂ Rd are
separated if inf{‖x − y‖ : x ∈ B, y ∈ C} > 0, where ‖ · ‖ is the Euclidean
distance. Thus two sets are separated if there is some space between these
sets. Then we say that set A ⊂ Rd is connected if for every nonempty
B,C such that A = B ∪ C, B and C are not separated. Thus a set is
connected if it cannot be written as a union of two separated sets. Note
that if A = A1 ∪ · · · ∪ AM where each Ai is connected and sets Ai are
pairwise separated, then this decomposition of A to pairwise separated sets
is maximal: since each set Ai is connected, we cannot find a decomposition
of larger cardinality to separated sets.

Definition 1 A shape tree of a connected set A ⊂ Rd, associated with ref-
erence point µ ∈ A, and set of radii R = {0 = r0 < r1 < · · · < rL}, is a tree
whose nodes are associated with subsets of A and radii in R in the following
way.

1. The tree has a single root node, and this root node is associated with
set A, and the radius of this node is r0 = 0.

2. Let node m be associated with set B ⊂ A and radius rl ∈ R, 0 ≤ l < L.

(a) If B \Brl+1
(µ) = ∅, then node m is a leaf node.

(b) Otherwise, write

B \Brl+1
(µ) = C1 ∪ · · · ∪ CM (1)

where sets Ci are pairwise separated, and each is connected. Then
node m has M children, which are associated with sets Ci, i =
1, . . . ,M , respectively, and each child is associated with the same
radius rl+1.

Figure 1 illustrates Definition 1. Frame a) shows set A ⊂ R2, and the
reference point at the origin. Set A is associated to the root node of the
shape tree drawn in frame e). Frame b) shows set B = A \ Br1

(µ), which
is associated to the single child node of the root node. Frame c) shows that
set B \ Br2

(µ) = C ∪D ∪ E has three separated components, denoted with
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Figure 1: Illustration of a shape tree.

C, D, and E, which are associated to the three child nodes of the node
corresponding to set B. Frame d) shows that set C \ Br3

(µ) = F ∪ G has
two separated components, denoted with F and G, which correspond to two
leaf nodes of the tree. Also the nodes associated with sets D ane E are leaf
nodes.

Regularity conditions. There exists connected sets for which it is not
possible to make the finite decomposition to pairwise separated and con-
nected components as in (1), for some radius and some reference point. These
sets do not have an associated shape tree. Under some regularity conditions
a shape tree always exists. For example, a sufficient condition is that the set
is star shaped with a smooth boundary function. We do not try to character-
ize the collection of sets for which shape trees exist. In practice we consider
always discrete sets, such as unions of rectangles. For these sets a shape tree
may always be constructed.

Modes of a connected set. The basic qualitative features of a set which
are represented with a shape tree are modes of the set.
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Definition 2 Modes of a connected set, associated with a reference point
and a grid of radii, are those sets which are associated with the leafs of the
corresponding shape tree of the set.

As the grid of radii is becoming finer, the modes of a connected set are
typically shrinking to sets containing only one point of the Euclidean space.
Using the term “modes of a set” is motivated by the fact that there is a
unique correspondence between the modes of a shape transform and with
the modes of the original set. This fact is illustrated in Section 2.2.2 and in
Section 2.2.3.

2.2 Shape plots and transforms

In Section 2.2.1 we explain how to construct functions from trees. In Section
2.2.2 we define a radius plot and transform of a connected set and in Section
2.2.3 we define a probability content plot and transform of a connected level
set of a density. Klemelä (2004a), Section B.2, contains the definition of
a volume plot and transform of a star shaped set. We use the term shape
transform to mean a radius transform, a probability content transform, or a
volume transform, and a similar use is made of the term shape plot. Section
2.2.4 contains the definition of a limit shape transform, as the steps of the
grid of radii of shape trees are becoming smaller.

2.2.1 Function generating trees

To define the plots we apply a general technique of associating 1D functions
to a tree. This technique was applied in Klemelä (2004b) to define a volume
plot of a level set tree.

Definition 3 A function generating tree is a tree satisfying the following
properties.

1. The root nodes and the children of each node have been ordered.

2. Each node is associated with a real valued height and the height of a
child is larger than the height of the parent.

3. Each node is associated with a positive length and the sum of the lengths
of children is smaller than or equal to the length of the parent.

We may associate intervals to the nodes of a function generating tree. We
define these intervals for the trees with a single root node. The lengths of the
intervals are determined by the lengths associated to the nodes. The root
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node is associated with the interval whose left end point is at the origin and
we create a nested family of intervals so that the intervals associated to the
children are inside the interval associated to the parent. The child intervals
are disjoint and equally spaced.

Definition 4 Intervals associated to the nodes of a function generating tree,
when this tree has a single root node, with equal spacing, are defined with the
following rules.

1. The root node is associated with interval

[0, L], (2)

where L is the length associated to the root.

2. Let a node be associated with interval [a, b] and assume that this node
has M ≥ 1 children, which are associated with lengths Li, i = 1, . . . ,M .
Define the distance between the child intervals as

δ =
(b− a) −

∑M
i=1 Li

M + 1
.

The i-th child is annotated with interval [ai, bi], where a1 = a + δ,
b1 = a + L1, and for i = 2, . . . ,M ,

ai = bi−1 + δ, bi = ai + Li. (3)

We give a formal definition of the 1D function associated with a function
generating tree. The basic idea is that a level set of the 1D function is equal
to the union of those intervals which are associated to the nodes whose height
is larger than or equal to the level of the level set.

Definition 5 The function g : R → R, generated by the function generating
tree T , is such that for level λ ∈ R, the level set {x ∈ R : g(x) ≥ λ} of g is
equal to

⋃

{Im : m is such node of T that Hm ≥ λ} , (4)

where Hm is the height associated to node m and Im is the interval associated
to node m, as defined in Definition 4.

We illustrate this definition in Figure 2. Figure 2a shows the intervals
which are associated to the nodes of the tree shown in Figure 1e. We have
drawn these intervals at the heights associated with the nodes. Figure 2b
shows the corresponding function. The graph of the function generated by
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Figure 2: Frame a) shows the intervals associated with the nodes and Frame
b) shows the function generated by the tree. Frame b) shows a radius plot
of the set in Figure 1a.

the tree may be thought to be constructed so that we draw vertical lines at
the end points of the intervals, joining a child to the parent, but delete the
intervals themselves.

We define the radius plot, the probability content plot, and the volume
plot by associating the nodes of the shape tree in different ways with lengths
and heights.

A shape tree was not defined as an ordered tree, but we may define an
ordering for the siblings based on the barycenters of the sets associated with
the nodes. We discuss ordering rules and define the ordering rule used in this
article in Klemelä (2004a), Section A.

2.2.2 Radius plot and transform of a connected set

We define a radius plot of a connected set as a plot of the function generated
by a shape tree, when we choose the height of a node of the shape tree to be
equal to the radius associated with the node, and the length of the node to
be equal to the volume of the set associated with the node.

Definition 6 A radius plot is a plot of a radius transform. A radius trans-
form of a connected set A is the 1D function generated by a shape tree of
A when we choose the height and the length in Definition 3 in the following
way.

1. The height associated to a node of the shape tree is equal to the radius
associated with the node.
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2. The length associated to node m of the shape tree is equal to vol(Am)
where Am is the set associated to node m.

Figure 2b shows a radius plot of the set shown in Figure 1a. The reference
point and the grid of radii is the same as in Figure 1.

The main qualitative features of a set which are visualized with a radius
plot are the modes of the set, as defined in Definition 2. There is a unique
correspondence between the modes of the set and the modes of the radius
transform. In Figure 1a we have labeled the modes of the set with M1-M4
so that they correspond to the labeling of the modes of the radius transform
in Figure 2b.

We visualize two quantitative features with the a radius plot: (1) volumes
of the sets associated with the nodes, since the lengths of the level sets of
the radius transform are equal to these volumes, and (2) distances of the sets
associated with the nodes from the reference point, since the levels of the
level sets of the radius transform are equal to these distances.

2.2.3 Probability content plot and transform of a connected level
set

A probability content plot is defined for the level sets of a density function.
By the level set of function f : Rd → R at level λ ∈ R we mean the set

{x ∈ Rd : f(x) ≥ λ}. (5)

In the definition of a probability content plot we modify the definition of
a radius plot by modifying the definition of the height associated with the
nodes. The heights of the nodes are determined so that the probability
content plot visualizes the probability content inside the level set. The length
of a node is taken to be the volume of the associated set, like in a radius plot.

Definition 7 A probability content plot is a plot of a probability content
transform. A probability content transform of connected level set A of a
density f : Rd → R is the 1D function generated by a shape tree of A when
we choose the height and the length in Definition 3 in the following way.

1. Let node m of the shape tree be associated with set B, let the parent of
node m be associated with height H, and let the children of node m be
associated with sets C1, . . . , CM . The height of node m is

H +
Pf(B) −

∑M
i=1 Pf(Ci)

vol(B)
, (6)

where we take H = 0 when m is the root node. We denoted above with
Pf the probability measure corresponding to density f .
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Figure 3: Frame a) shows a contour plot of a density. Frame b) shows the
probability content plot of the lowest level set of the contour plot.

2. The length associated to node m of the shape tree is equal to vol(Am)
where Am is the set associated to node m.

Figure 3 illustrates Definition 7. Figure 3a shows a contour plot of a
density. Figure 3b shows a probability content plot of the lowest level set in
the contour plot. This level set is shown in Figure 1a and the level of this
level set is 0.002. The reference point and the grid of radii is the same as in
Figure 1.

Similarly as for a radius plot, the basic qualitative features which are
visualized with a probability content plot are the modes of the set.

We visualize two quantitative features with a probability content plot:
(1) similarly as for a radius plot, the volumes of the sets associated with
the nodes, and (2) the probability content of the “tail” parts of the level
sets, by the choice of the levels of the level sets of the probability content
transform. The excess masses of a probability content transform are equal
to the probability content of the corresponding regions of the level set. We
will formulate more precisely the visualization of the probability content in
Theorem 1.

Theorem 1 says that the tail probabilities of density f on level set A are
equal to the excess masses of the probability content transform of A. To
formulate the theorem we use the following notations. When m is a node of
a shape tree, then we denote with Cm the set associated with node m. When
the shape tree is augmented to be a function generating tree then we denote
with Hm the height and with Im the interval (as defined in Definition 4)
associated with node m. We denote with parent(m) the parent of node m.
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Theorem 1 Let m0 be a node of a shape tree of level set A ⊂ Rd of density
f : Rd → R. Let g : R → R be the probability content transform of A,
as defined in Definition 7. Then the probability Pf(Cm0

) of the tail region
Cm0

⊂ A is equal to the excess mass of g at interval Im0
and with level

Hparent(m0):
∫

Cm0

f =

∫

Im0

(

g −Hparent(m0)

)

where for the case that m0 is the root node we denote Hparent(m0) = 0.

A proof and an illustration of Theorem 1 is given in Klemelä (2004a),
Section B.1.

As a corollary of Theorem 1 we have that the probability of level set A
is equal to the integral of the probability content transform: when g is the
probability content transform of A, then

Pf(A) =

∫

∞

−∞

g.

2.2.4 The limit shape transform

A shape transform is a radius transform, a probability content transform,
or a volume transform. We have associated a shape transform always to a
shape tree of A, that is, to a finite grid of radii. We may define the limit
shape transform by considering a sequence of shape trees whose grid of radii
is becoming finer, and defining the shape transform to be the limit of the
shape transforms associated with these shape trees.

Definition 8 The shape transform v(A) : R → R of a bounded set A ⊂ Rd,
associated with reference point µ ∈ A, is defined by

v(A)(x) = lim
k→∞

v(A;Tk)(x), x ∈ R,

where v(A;Tk) is a shape transform of A associated with shape tree Tk, as
defined in Definition 6, Definition 7, or in Klemelä (2004a), Definition 12,
Tk, k = 1, 2, . . ., is a sequence of shape trees of A, where each tree is associated
with reference point µ ∈ A, and with grid of radii Rk = {rk,1 < · · · < rk,k},
and the sequence of grid of radii has the property

lim
k→∞

max{rk,i − rk,i−1 : i = 1, . . . , k + 1} = 0

where we denote rk,0 = 0 and rk,k+1 = supx∈A ‖x− µ‖ for k = 1, 2, . . ..

12



2.3 Location plot

With a location plot we visualize the locations of the sets associated with
the nodes of a shape tree. We draw the barycenters of these sets, when with
the barycenter of a set A ⊂ Rd we mean the d-dimensional vector

barycenter(A) =
1

vol(A)

∫

A

x dx ∈ Rd. (7)

The barycenter is the “center of mass” of the set: it is the expectation of the
random vector which is uniformly distributed on the set.

Since barycenters are d-dimensional vectors we need d windows to draw
the barycenters. Each window shows one coordinate of barycenters. We
associate each location plot to a shape plot, and choose the vertical positions
of the nodes in the location plot to be equal to the vertical positions in the
associated shape plot.

Definition 9 The location plot of a shape tree, associated with a shape plot,
consists of d windows. The nodes of the shape tree are drawn as bullets.

1. The horizontal position of a node in the i-th window, i = 1, . . . , d, is
equal to the i-th coordinate of the barycenter of the set associated with
the node.

2. The vertical positions of the nodes are the same as in the associated
shape plot.

3. The parent-child relations are expressed by the line joining a child with
the parent.

Figure 4 shows a location plot of the set in Figure 1a, corresponding to
the radius plot of Figure 2b.

It is enough to label the leaf nodes to identify the nodes between different
windows of a location plot (and between the associated shape plot and the
location plot). However, to ease the identification of nodes across different
windows, we also color the nodes. We choose first distinct colors for the
leaf nodes and then travel towards the root node, changing the color always
when two branches are merging. We color also the lines joining a child and
a parent. The color of a line will be the same as the color of the child node
which is at the child end (upper end) of the line.

Figure 5 illustrates the location plot of Figure 4. We have drawn as circles
the 7 barycenters of the sets associated with the 7 nodes of the shape tree.
These barycenters are joined with dotted lines to the corresponding nodes of
the trees related to the 1st and 2nd window of the location plot.
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Figure 4: Location plot of the level set in Figure 1a, corresponding to the
radius plot of Figure 2b.

The leaf nodes of a shape tree correspond to the certain most extreme
boundary points of the set, and the leaf nodes in a location plot show the
locations of these extreme points. Thus a location plot visualizes a delineator
of the set.

3 Interpretation and application of the tools

In Section 3.1 we discuss the effect of the choice of the parameters of shape
trees. In Section 3.2 we discuss how the shape of a density is reflected by
the level sets and we illustrate how shapes of sets are reflected by radius
plots. In Section 3.3 we discuss why shape trees are sometimes easier to use
in visualization than marginal densities and slices.

3.1 Choice of the parameters

We discuss the choice of the grid of radii, the choice of the reference point,
and differences between a radius plot and a probability content plot. Klemelä
(2004a), Section C.1, discusses the choice of the metric in the definition of a
ball.

3.1.1 Grid of radii

Figure 6 shows a radius plot and the corresponding location plot for the set
of Figure 1a, when a grid of 30 radii is used, and the set is approximated
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Figure 5: An illustration of the location plot in Figure 4.

with a grid of size 1002. Note that in Figure 1, Figure 2, and Figure 3 we
applied a grid of 4 radii and these radii were not equispaced.

Section 2.2.4 gives the definition of the limit shape transform, as a limit
of a sequence of shape transforms, when the steps of the grid of radii are
becoming smaller. In practise, using a grid of radii that is too fine may result
to a messiness of plots. In fact, when we approximate a smooth boundary
with some discrete approximation, and use a fine grid of radii, then the
resulting shape transforms may have some spurious modes which do not
correspond to any real modes in the original smooth set. In this article we
approximate sets with unions of rectangles. The “spurious” modes do not
typically have disturbing effects on shape plots. However, location plots look
messy with a large number of spurious modes. One should avoid a too fine
grid of radii to avoid messiness of location plots. On the other hand, with a
too sparse grid of radii some real modes may not show up in the shape tree.
Discretization effects are further illustrated in Klemelä (2004a), Section D.1,
Section D.2.
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Figure 6: A radius plot and the corresponding location plot for the set of
Figure 1a.

3.1.2 Reference point

The choice of the reference point has a substantial influence on the plots.
Natural choices for the reference point are either the mode of the density,
or the barycenter of the level set. The barycenter of a level set is not equal
to the mode when the density is skewed. Before applying shape trees, it is
useful to investigate the skewness of the density with a barycenter plot of
the level set tree, as introduced in Klemelä (2004b). The expectation could
also be used as a reference point if it exists, and belongs to the level set. The
mode is the only point which belongs to every level set of a unimodal density,
and it may be helpful to apply the same reference point for every level set
when we are studying a series of level sets.

One may get additional information by trying several reference points.
We illustrate this with a skewed density, shown in Figure 7a. We define the
density in Klemelä (2004a), Section C.4, following Azzalini and Dalla Valle
(1996). Frame a) shows a contour plot where the mode is shown with a blue
square and the barycenter of the level set with level 0.02 is shown with a red
bullet. Frame b) shows a radius plot of the 0.02 level set when the reference
point is the mode. Frames c) and d) show the corresponding location plot.
The radius plot is unimodal although the level set is not a ball, because the
reference point is far from the barycenter of the level set. The skewness in
the location plot reveals the fact that the chosen reference point is far from
the barycenter.

In Figure 8 the reference point is the barycenter. Figures 8a-c show a
radius plot and the corresponding location plot of the 0.02 level set of the
skewed density of Figure 7a. Now the radius plot is bi-modal. The north-east
extension is closer to the barycenter, with more excess volume, than the the
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Figure 7: Skewed density; the mode as the reference point for the 0.02 level
set; a radius plot and the corresponding location plot.
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Figure 8: Skewed density; the barycenter as the reference point for the 0.02
level set. Frame a) shows a radius plot, frames b) and c) show the loca-
tion plot corresponding to the radius plot, and frame d) shows a probability
content plot.

south-west extension, and thus the corresponding mode in the radius plot is
shorter and wider than the mode corresponding to the south-west extension.

3.1.3 Radius plot vs. probability content plot

A radius plot is easier to understand than a probability content plot. How-
ever, a probability content plot visualizes alternative information, showing
the probability mass inside the level set. Thus a probability content plot
might be relevant for making inference whether the modes of a level set of a
density estimate correspond to the true modes of the level set of the under-
lying density function.

A probability content plot may be useful in visualizing skewed densities.
Figure 8d shows a probability content plot for the skewed density of Figure 7a,
again for the 0.02 level set, when the reference point is the barycenter. We
may compare the probability content plot with the radius plot in Figure 8a.
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In the probability content plot of Figure 8d the mode corresponding to the
north-east extension of the level set is clearly bigger than the mode corre-
sponding to the south-west extension. In the radius plot of Figure 8a these
extensions correspond to modes of roughly the same size. Thus the probabil-
ity content plot has visualized the fact that the north-east direction contains
more probability mass. The location plot corresponding to the probability
content plot of Figure 8d is shown in Klemelä (2004a), Section C.4.

3.2 Interpretation of the graphics

3.2.1 Level sets and the shape of the density

The idea of visualizing densities with level sets appears in Scott (1992). This
idea has been used to gain one more dimension: 3D functions may be vi-
sualized with perspective plots of 3D level sets. Also the shape tree based
visualizations utilize the fact that the shape of the density is reflected by the
shape of the level sets. However, besides the shape of the level sets one has
to take into account the spacing of the level sets. The spacing of the level
sets affects the “kurtosis” and “skewness” of the density.

1. We use the term “kurtosis” in an informal sense to refer to the spacing
of the level sets in the vertical direction. For example, all spherically
symmetric densities have ball-shaped level sets. Spherically symmetric
densities may be written as f(x) = g(‖x‖), where g : [0,∞) → [0,∞)
and ‖ · ‖ is the Euclidean distance. The volumes of the level sets are
however changing differently as the function of the level, depending on
function g.

2. Level sets may be unequally spaced in the horizontal direction. This
happens for skewed densities.

Level set trees may be used to diagnose kurtosis and skewness. A volume
plot of a level set tree visualizes the change of the volumes of level sets as
the function of the level, and thus it visualizes the kurtosis. See Klemelä
(2004a), Section C.2. A barycenter plot of the level set tree may be used to
detect skewness of the density.

3.2.2 Uni- and bi-modality

Ellipsoidal level sets. A shape transform of a ball is a unimodal function.
Shape transforms of ellipses are bi-modal functions, when the reference point
is not close to the boundary of the ellipse. Figure 9 shows three sets and
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Figure 9: Frame a) shows a ball and 2 ellipses, frame b) shows a radius plot
of the ball, frame c) shows a radius plot of the shorter ellipse, frame d) shows
a radius plot of the longer ellipse.
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Figure 10: Frame a) shows 3 Claytonian level sets and frames b)-d) show
the corresponding radius plots. Frame b) corresponds to the set with the
black solid boundary, frame c) to the set with the blue dashed boundary,
and frame d) to the set with the red dotted boundary.

their radius transforms, when the reference point is at the origin. Frame a)
shows a ball and 2 ellipses, frame b) shows a radius plot of the ball, frame c)
shows a radius plot of the shorter ellipse, and frame d) shows a radius plot
of the longer ellipse. The modes of the radius transforms are becoming more
distinguished when the ellipses are becoming longer.

Non-symmetric tail dependence. Figure 10a shows 3 Claytonian level
sets. The densities in the Clayton family have non-symmetric tail depen-
dence; the dependence is larger in the negative orthant. We chose the
marginal densities to be standard Gaussian. The Clayton family was dis-
cussed by Clayton (1978) and we define this family in Klemelä (2004a), Sec-
tion C.5.

Figures 10b-d show radius plots corresponding to the level sets. The
radius plots visualize the asymmetry of dependence: the mode corresponding
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Figure 11: Frame a) shows 3 level sets and frames b)-d) show the corre-
sponding radius plots. Frame b) corresponds to the set with the black solid
boundary, frame c) to the set with the blue dashed boundary, and frame c)
to the set with the red dotted boundary.

to the area in the negative orthant is higher but the mode corresponding to
the area in the positive orthant is wider.

3.2.3 Multimodality of level sets

Figure 11a shows three level sets which have 4-modal shape transforms. The
black solid line delineates a level set of a mixture of two Gaussian densities,
the blue dashed line delineates a level set of a density with Student copula and
with standard Gaussian margins, and the red dotted line delineates the 10%
level set of the Bartlett-Epanechnikov product kernel. The densities with
Student copula are defined in Klemelä (2004a), Section C.6. The Bartlett-
Epanechnikov density is (x1, . . . , xd) 7→ (3/4)dΠd

i=1 max{0, 1 − x2
i }.

Figures 11b-d show the corresponding radius plots. The 4 tails of the
mixture of Gaussians show up in the radius transform as 4 modes of equal
size. The density with Student copula has also 4 tails but of unequal size,
and they show up in the radius transform as modes of unequal size. The 10%
level set of Bartlett-Epanechnikov density has a slightly rectangular form and
thus the radius transform has 4 modes but these modes are of small size.

3.3 Marginal densities and slices

Multivariate density estimation has been applied in exploratory data analysis
and data mining by looking at 2 or 3 dimensional slices or marginal densities
of the original multivariate density estimate. These slices or marginal den-
sities may be visualized with perspective plots (2 dimensional case) or with
perspective plots of density contours (3 dimensional case). For example, 4
dimensional densities may be visualized by visualizing 3D density contours
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as the fourth variable is changed over its range, see Scott (1992) and Härdle
and Scott (1992).

There are two difficulties with this approach. First, there exists a huge
number of projections from which to construct marginal densities, and even
larger number of possible slices. Grand tour and projection pursuit may be
applied to find some informative marginal densities, see for example Asimov
(1985), Cook, Buja and Cabrera (1993), Cook, Buja, Cabrera and Hurley
(1995). (Note that we may first project data to 2 or 3 dimension and only
after that smooth the data, see Wegman and Luo (2002).) The second diffi-
culty is to deduce from marginal densities and slices the shape of the original
function: even when we had a sufficient collection of marginal densities and
slices, it is a non trivial effort to make conclusions about the shape of the orig-
inal density based on these low dimensional views. Note that looking only at
marginal densities may hide some features and often we need a combination
of slices and marginal densities, see Furnas and Buja (1994).

We argue that it is practically impossible to use marginal densities to
visualize multimodality of level sets and that it is very difficult to visualize
the multimodality of level sets with slices, due to the large number of possible
slices.

Marginal densities. Multimodality of densities may sometimes be de-
tected by visualizing marginal densities, problems arising when the modes
are close to each other or when there are a large number of modes. On the
other hand, detecting multimodality of level sets with marginal densities is
essentially more difficult. Figure 12 shows the marginal densities along the
coordinate axes of the density shown in Figure 3a. The precise shape would
be difficult to reconstruct even with a large number of marginal densities.

Slices. With skillfully chosen slices it is possible to visualize multimodal-
ity of level sets. However, the main problem is to find the right slices and
to keep records of the information provided by the slices. Note that in the
d-dimensional Euclidean space there are d(d − 1)/2 ways to choose two co-
ordinate directions, but we need also to consider other than coordinate di-
rections, and for each direction we need a grid of slices. Klemelä (2004a),
Section C.7, illustrates the difficulty of using slices to visualize the density
shown in Figure 3a.
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Figure 12: The marginal densities on the coordinate axes of the density of
Figure 3a.

4 Implementation of the graphical tools

We present an algorithm for the calculation of a shape tree in Section 4.1.
In Section 4.2 we give examples of applying shape trees in the case of some
useful density estimators.

4.1 Algorithms

We assume that the density function (density estimate) to be visualized is a
rectangularwise constant function:

f(x) =
∑

R∈P

fRIR(x), x ∈ Rd, (8)

where fR ∈ R, and P is a finite collection of almost everywhere disjoint
rectangles.

We present algorithm LeafsFirst for the calculation of a shape tree.
This algorithm starts building the tree from the leaf nodes. First we find
the rectangle which is furthest away from the reference point. (We define
the distance of a rectangle to a point to be the distance of the point to
the boundary of the rectangle.) This rectangle is associated to the first leaf
node. We go through rectangles in such a way that we always encounter first
rectangles which are further away from the reference point, and check whether
the new rectangle touches some of the previous collections of rectangles. If
it does not touch any previous collections of rectangles, then we create a
new leaf node and associate this leaf node with the rectangle. Otherwise,
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if it touches some previously encountered rectangle, then we associate it to
the corresponding collection of rectangles, and if it touches several rectangles
corresponding to different branches of the tree, then we join those branches.

We give below a pseudo code for the algorithm LeafsFirst. This algo-
rithm creates a shape tree for a level set of a piecewise constant function
as in (8). Since the function is already assumed to be discrete, we let the
function determine the grid of radii of the shape tree. We define a grid of
radii of cardinality #P + 1, corresponding to reference point µ ∈ Rd, by
taking r0 = 0, and assuming we have defined rl, 0 ≤ l < #P, let

rl+1 = inf{D(µ,R) : R ∈ P, D(µ,R) > rl} (9)

where D(µ,R) = inf{‖x− µ‖ : x ∈ R}.

1. Input of the algorithm is a piecewise constant function f as in (8), a
level λ ∈ R, and a reference point µ ∈ A = {x ∈ Rd : f(x) ≥ λ}.

2. Output of the algorithm is a shape tree of A, as defined in Definition 1,
with the grid of radii defined with the rule (9).

ALGORITHM LeafsFirst

1. Find the collection of rectangles Pλ forming the level set with level λ:
Pλ = {R ∈ P : fR ≥ λ}.

2. Order rectangles R ∈ Pλ according to the distance to the reference
point µ:

R1 � R2 ⇔ D(µ,R1) ≥ D(µ,R2).

3. Find the first rectangle R ∈ Pλ in the ordering �, create the first leaf
node of the shape tree, the set associated with this node is R, and the
radius is D(µ,R).

4. We go through rectangles R ∈ Pλ in the ordering �. Assume we have
encountered rectangle R ∈ Pλ. Find which sets, associated with the
current root nodes (those nodes which do not yet have a parent), touch
rectangle R.

(a) If rectangle R does not touch any sets associated with the current
root nodes, then create a new leaf node to the tree. The set
associated with this node is R, and the radius is D(µ,R).
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(b) If rectangle R touches sets C1, . . . , CM associated with the current
root nodes, then create a parent to these nodes which are touched.
The set of this parent node is R ∪ C1 ∪ · · · ∪ CM , and the radius
is D(µ,R).

We illustrate the algorithm in Klemelä (2004a), Section D.1.
In step 1 of the algorithm we need to go through all rectangles in P,

which takes O(#P) steps. In step 2 we need to calculate the distances be-
tween reference point µ and the rectangles in Pλ, and order these rectangles.
Calculation of the distance between µ and a rectangle takes d flops. Thus
step 2 requires O(d·#Pλ) flops. In the worst cases the step 4 of the algorithm
requires the pairwise comparison of all rectangles in Pλ, to find which rectan-
gles touch each other, which takes O(d · (#Pλ)

2) steps. Thus the worst case
complexity of the algorithm is O (#P + d · (#Pλ)

2) . Typically #Pλ is very
large and the naive version of the algorithm is often not feasible. However,
we may enhance the algorithm with the bounding box technique.

In the bounding box technique we associate the nodes with the bounding
box of the set associated with a node. The bounding box of set A ⊂ Rd

is the smallest rectangle containing A, such that the sides of the rectangle
are parallel to the coordinate axes. In step 4 of algorithm LeafsFirst we
find which rectangles, associated with the current root nodes, are touched
by rectangle R. If rectangle R does not touch the bounding box of those
rectangles, then it does not touch any rectangles inside the bounding box.
Only if it does touch the bounding box, then we have to travel further towards
the leaf nodes and find whether R touches some of the smaller bounding
boxes. With the bounding box enhancement the worst case complexity of
step 4 is still O(d · (#Pλ)

2), but with this technique we achieve considerable
improvements in typical cases.

Klemelä (2004a), Section D.3, contains a pseudo code for the bound-
ing box enhancement of step 4 of algorithm LeafsFirst. Klemelä (2004a),
Section D.4, contains comments helping the practical application of the al-
gorithms.

4.2 Density estimators

We give examples of shape trees for the kernel estimator, CART histogram
and bootstrap aggregated estimator.
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Figure 13: Contour plots of three estimates: a) kernel estimate, b) CART
histogram, and c) bootstrap aggregated estimate. We estimate the density
of Figure 3a.

4.2.1 Kernel estimator

The kernel estimator, based on sample X1, . . . , Xn ∈ Rd, is defined as

f̂(x) =
1

nhd

n
∑

i=1

K((x−Xi)/h), x ∈ Rd, (10)

where h > 0 is the smoothing parameter and K : Rd → R is the kernel
function. We evaluate the kernel estimate on a grid which lies on a rectangle
which contains the support of the estimate. Let G be the set of grid points
where the estimate is positive. We consider the discretized kernel estimator

f̄(x) =
∑

g∈G

f̂(g)IR(g)(x), x ∈ Rd,

where R(g) is the rectangle whose center is g and whose side lengths are
equal to the steps of the grid, and f̂ is defined in (10).

Figure 13a shows a contour plot of a kernel estimate. We generated a
sample of size 500 from the density whose contour plot is shown in Figure 3a.
We applied the Bartlett-Epanechnikov product kernelK(x) = (3/4)dΠd

i=1(1−
x2

i )+, where (a)+ = max{0, a}. The smoothing parameter was h = 1.8, and
the kernel estimate was discretized with a grid of 322 grid points.

Figure 14 shows a radius plot and the corresponding location plot for the
kernel estimate of Figure 13a, for the level set of the kernel estimate with
level 0.002. The reference point is the origin and we used a grid of 26 radii.
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Figure 14: Kernel estimate: a radius plot and location plot for the estimate
of Figure 13a.

4.2.2 CART histogram

A histogram is an estimate of the form

f̂(x,P) =
∑

R∈P

nR

n vol(R)
IR(x), x ∈ Rd, (11)

where P is a finite partition to rectangles of a rectangle estimated to con-
tain the support of the true density, and nR is the number of observations
X1, . . . , Xn in R. An CART histogram is a histogram whose partition is
chosen in a data-dependent way. Typically the partition is chosen by max-
imizing the likelihood of the estimate in a greedy fashion, followed by the
complexity penalized pruning. For details and references, see Holmström,
Hoti and Klemelä (2005).

Figure 13b shows a contour plot of a CART histogram for a sample of
size 1000 from the density whose contour plot is shown in Figure 3a. The
fine partition was grown so that the cells with less than 5 observations were
not splitted, and then the fine partition was pruned to contain 15 rectangles.

Figure 15 shows a radius plot and the corresponding location plot for
the CART histogram of Figure 13b, for the level set with level 0.002. The
reference point is the origin and we let the estimate to determine the grid of
radii.

4.2.3 Bootstrap aggregation

In bootstrap aggregation we generate several bootstrap samples from the
original sample, construct an CART histogram based on each sample, and
the final estimate is the average of the estimates based on the bootstrap
samples. For details, see Holmström et al. (2005).
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Figure 15: CART histogram: a radius plot and location plot for the estimate
of Figure 13b.
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Figure 16: Bagged estimate: a radius plot and location plot for the estimate
of Figure 13c.

Figure 13c shows a bagged estimate for a sample of size 1000 from the
density whose contour plot is shown in Figure 3a. We took the average of 10
CART histograms, each bootstrap sample was constructed with n/2-out-of-n
without-replacement bootstrap. CART histograms were grown so that the
cells with less than 5 observations were not splitted and the fine partition
was pruned to contain 10 rectangles.

Figure 16 shows a radius plot and the corresponding location plot for
the bagged estimate of Figure 13c, for the level set with level 0.002. The
reference point is the origin and we used a grid of 600 radii.
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5 Example: Stock index returns

We study the distribution of the daily returns of stock indeces SP500, DAX30,
FTSE100, and Nikkei225. We collected data from the one year time period
4.1.2003-4.1.2004. The data consists of the daily returns, Xi = (Xi1, . . . , Xid),
Xij = (Si,j−Si−1,j)/Si−1,j, where Si,j is the closing price at the ith day of the
jth index, i = 1, . . . , n, j = 1, . . . , d. The number of observations is n = 231
and the dimension of the data is d = 4.

We assume that the distribution of the returns is changing continuously
as a function of time, so that the returns are not identically distributed. We
apply the time-localized kernel estimator

f̂(x) = h−d
n

∑

i=1

pg,iK((x−X(i))/h), x ∈ Rd, (12)

where X(1), . . . , X(n) are the observations ordered according to time so that
X(i) corresponds to the previous in time observation than X(j) when i < j,
and the weights are the Gaussian weights

pg,i =
qg,i

∑n
i=1 qg,i

, qg,i =

{

exp {−(n− i)2/(2g2)} , when (n− i)/g ≤ 4
0, otherwise ,

i = 1, . . . , n. We give more weight to the recent observations and gradually
decrease the weights for the more distant observations. Parameter g > 0
is the time localization parameter so that when g is small the estimate is
effectively based only on recent observations. We choose g reflecting the rate
of change of the density as a function of time. The kernel estimator in (10)
is a special case of the estimator in (12) when pg,i = n−1 for i = 1, . . . , n. For
the properties of a time-localized kernel estimator, see Klemelä (2005).

We applied the kernel estimator defined in (12) with smoothing parameter
h = 1.1, with the Bartlett-Epanechnikov product kernel, and the estimate
was discretized with a grid of 164 points. We chose the time localization
parameter g = 40 so that the weights are positive for 161 most recent ob-
servations. We normalized the marginal variances to unity. The mode of
the estimate is (0.09, 0.14,−0.09, 0.67). A barycenter plot of a level set tree
of the estimate indicates that the estimate is skewed in the 4th coordinate
(NIKKEI225), see Klemelä (2004a), Section E. Thus we chose the barycen-
ters to be the reference points of the shape trees.

Figure 17 shows 3 radius plots with the barycenters as the reference
points: Frame a) shows the level set with level 0.01 · ‖f̂‖∞ ≈ 0.0004, with
barycenter (0.10, 0.04, 0.08,−0.11) as the reference point. Frame b) shows
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Figure 17: Radius plots of 3 level sets of a kernel estimate from the stock
index return data.
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Figure 18: A location plot for the 10% level set, corresponding to the radius
plot in Figure 17b.

level 0.1 · ‖f̂‖∞ ≈ 0.004, with barycenter (0.20, 0.18, 0.11, 0.12) as the ref-
erence point. Frame c) shows level 0.5 · ‖f̂‖∞ ≈ 0.021, with barycenter
(0.14, 0.11, 0.06, 0.34) as the reference point.

Figure 18 shows the location plot for the 10% level set, corresponding to
the radius plot in Figure 17b.

One expects that the index returns are correlated and that the level sets
of the density have ellipsoidal shape, extending from the negative orthant
to the positive orthant. The ellipsoidal shape of the level sets would imply
two modes for the radius plot. The bi-modal shape of the level sets was
conformed by the radius plots in Figures 17a and c. Note however that these
figures reveal a certain egg-shapedness of the level sets.

An additional deviation from the ellipsoidal shape is seen from Figure 17b.
Figure 17b shows that the radius plot for the 10% level set has three appar-
ently non-negligible modes. The mode labeled as M3 corresponds to negative
returns for the SP500 but to positive returns for Nikkei225, as can be seen
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from Figure 18a, and Figure 18d, respectively. Klemelä (2004a), Section E,
shows a 2D slice for variables SP500 and Nikkei225.

The location plot in Figure 18 shows that the mode M1 corresponds to
negative returns and the mode M2 corresponds to positive returns. Mode
M1 is located at (1.35,−0.28,−0.26,−2.84) and mode M2 is located at
(0.93, 1.41, 1.41, 2.67), as can be seen from Figure 18.

In summary, the radius plots indicate that the distribution of the returns
is not multivariate Gaussian, for any covariance matrix, due to the egg-
shapedness and the 3-modality of the level sets.

6 Discussion

Shape tree technique. With the shape tree technique we may visualize
at one step certain important features of the density. With a shape tree we
visualize a single level set of the density. It is often enough to visualize only
few level sets to get an accurate impression from the shape of the density.

Shape trees visualize connected sets: the density is assumed to be uni-
modal, or else we restrict ourselves to some connected part of a level set, or to
lower levels. We may apply the following steps in exploratory data analysis.

1. Construct non-parametric density estimates from the data. One should
calculate several estimates corresponding to a scale of smoothing pa-
rameters.

2. Apply the level set tree based techniques (the volume plot and barycen-
ter plot), as introduced in Klemelä (2004b), to visualize the density
estimates.

(a) Make inference on the multimodality of the density. At this step
we may also choose the values of the smoothing parameters of the
estimator.

(b) Make inference on the skewness and the kurtosis of the density. If
the density is concluded to be multimodal we study the skewness
and the kurtosis of the density only on a region where the level
sets are connected.

3. Apply the shape tree based techniques to visualize level sets of a density
estimate.

(a) If we have concluded that the density is unimodal, then we may
apply shape trees to visualize the complete collection of level sets
of the estimate.
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(b) If the density is concluded to be multimodal, we may restrict
ourselves to a lower level set, or to a single mode (single connected
component of a level set), and apply shape trees to make inference
on the shape of the density restricted to this set.

We have presented the shape plots and the location plot for the visu-
alization of a shape tree. The shape plots include the radius plot and the
probability content plot. The shape plots show “modes” of the level set.
Modes of the set are the tail regions of the set which do not fit inside a ball
centered at a reference point. In addition, the shape plots visualize various
quantitative information concerning the tail regions of the level set. The
location plot visualizes the locations of the tail regions of the level set, show-
ing the barycenters of the tail regions. The location plot visualizes also a
“delineator of the set”.

Density estimators. We have considered three types of estimates: ker-
nel estimates, CART histograms, and bootstrap aggregated estimates. The
kernel estimator suffers from the computational complexity and the curse of
dimensionality. In some moderate dimensional cases (d=3,4) we may suc-
ceed in calculating shape trees from kernel estimates. CART histograms are
computationally attractive and somewhat resistant to the curse of dimen-
sionality. However, level sets of CART histograms are often quite inaccurate
estimates of the level sets of the true density. We may increase statistical
accuracy of CART histograms with bootstrap aggregation, with some cost
of computational complexity.
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A Ordered shape trees

To define shape transforms we need to define a shape tree as an ordered
tree: the children of a given parent has to be ordered. We do not include
a definition of the ordering in the proper definition of a shape tree given
in Definition 1 for two reasons: (1) there are several almost equally natural
ways to define an ordering for the siblings, and (2) with such an ordering we
may express less useful information than otherwise with the shape trees.

We give an ordering rule based on the barycenters of the separated com-
ponents associated with the nodes of a shape tree. The barycenter of a set
is defined in (7).

Definition 10 Origin based barycenter ordering of a set of siblings of the
shape tree is given by the following rule.

1. The first node among the siblings is the one with the largest Euclidean
distance of the barycenter from the origin.

2. After that, the sibling nodes are ordered according to the distance of
their barycenters from the barycenter of the first node; the second node
is the one with the closest Euclidean distance of the barycenter from
the barycenter of the first node. We continue ordering by finding the
distance to the first node.

In practise shape trees are such that each node has either 0, 1, or 2
nodes. Only when we use few levels to build a shape tree, it may happen
that some node has 3 or more children. Thus, to define an ordering we need
to concentrate on finding the first sibling: the rule for ordering the remaining
siblings is not important. Thus item 2 of Definition 10 is less important than
item 1.

We may express useful information with the ordering if the ordering of the
leaf nodes reflects somehow the spatial location of the sets associated with
the leaf nodes. However, a tree may be ordered only by starting from the
root nodes. To partially solve this problem we associate every node m with
a vector da(m), which is chosen in a certain way by choosing a barycenter
from all the barycenters of the descendants of the node. When we order the
siblings with the help of vectors da(m), then the ordering takes better into
account the location of the sets associated with the leaf nodes.

Definition 11 Origin based descendant-barycenter ordering of a set of sib-
lings of the shape tree is given by the following rule. Annotate node m with
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that barycenter da(m) of its descendants which has the largest Euclidean dis-
tance from the origin:

da(m) = µ ∈ Rd

when µ is such that

‖µ‖ = max {‖barycenter(A)‖ : set A is associated with a descendant of m} .

1. Node m is the first node among the siblings if ‖da(m)‖ is larger than
‖da(m′)‖ for other siblings m′.

2. Node m′ is the second node if ‖da(m′)−da(m)‖ is smaller than ‖da(m′′)−
da(m)‖ for other siblings m′′, where m is the first node. We continue
ordering by finding the distance to the first node.

Again, in Definition 11 item 1 is the important part. Note that Defi-
nition 11 would be equivalent to Definition 10 if we would define da(m) =
barycenter(A), where A is the set associated with node m. The origin based
descendant-barycenter ordering is not essentially more complex computa-
tionally than the origin based barycenter ordering, when one calculates the
vectors da(m) for each node m at the same time when the tree is grown.

We have used the ordering rule of Definition 11 in this article.

B Shape plots

B.1 Proof and illustration of Theorem 1

Proof of Theorem 1. We say that a node is a descendant of a node m if
it is a children of m or a children of other descendant of m. We have that

∫

Cm0

f =
∑

{

Pf (Cm) −
∑

{Pf(Cm′) : m′ is a child of m} :

m is a descendant of m0 or m = m0}(13)

=
∑

{

vol(Cm)
(

Hm −Hparent(m)

)

:

m is a descendant of m0 or m = m0}(14)

=

∫

Im0

(

g −Hparent(m0)

)

. (15)

�
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Figure 19: Steps of the proof of Theorem 1.

Illustration of Theorem 1. Figure 19 illustrates Theorem 1. Node m0

is the node associated with set C in Figure 1c. Step (13) in the proof of
Theorem 1 follows from Figure 19a: Pf(Cm0

) is equal to the sum of the
probabilities of regions I, II, and III. Step (14) follows from the definition
of the height of the nodes given in (6). Step (15) follows from Figure 19b:
excess mass of function g in interval Im0

is equal to the the volume of the
colored region, and this volume is equal to the sum of the volumes of the
three rectangles whose union is forming the colored region.

B.2 Volume plot of a star shaped set.

To define the volume plot we modify the definition of the radius plot by
modifying the definition of the length associated with the nodes. We take
the length to be equal to the volume of the pre-image of the (outer) part
of the boundary of the set associated with the node, in terms of the polar
coordinate representation of the boundary. The heigth of a node is taken to
be its radius, like in the radius plot.

The volume plot is defined only for the star shaped sets. Set A ⊂ Rd,
d ≥ 2, is called star shaped when there exists reference point µ ∈ A and
boundary function g : Θ → [0,∞) so that

A = {µ+ rΨ(θ) : r ∈ [0, g(θ)], θ ∈ Θ},

where Θ = [0, 2π] × [0, π]d−2,

Ψ(θ) = (ψ1(θ), . . . , ψd(θ)) , ψi(θ) = cos θi−1 sin θi · · · sin θd−1,
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cos θ0 = 1, θ = (θ1, . . . , θd−1). For example, when d = 2, then Ψ(θ1) =
(sin θ1, cos θ1), θ1 ∈ [0, 2π].

Definition 12 A volume plot is a plot of a volume transform. A volume
transform of a star shaped set A is the 1D function generated by a shape tree
of A when we choose the height and the length in Definition 3 in the following
way.

1. The height associated to a node of the shape tree is equal to the radius
associated with the node.

2. The length associated to node m of the shape tree is equal to

vold−1 ({θ ∈ Θ : µ+ rΨ(θ) ∈ Am for some r ∈ [0, g(θ)]})

where Am is the set associated to node m.

Note that the visualization of a star shaped set is equivalent to the visu-
alization of the boundary function of the set.

1. In the two dimensional case, when d = 2, the volume plot is closely
related to the plot of the boundary function. The boundary function
g is equal to a scaled limit of volume transforms, when we let the step
size of the grid of radii vanish, and define the ordering of nodes of the
shape tree of A suitably, possibly in a different way than we did in
Section A.

For example, the boundary function of a 2D ball, centered at the origin,
when the reference point is at the origin, is RI[0,2π] where R is the
radius of the ball. On the other hand, the limit of volume transforms
is RI[0,2πR]. Note that a radius transform of a 2D ball is drawn in
Figure 9b. This radius transform is a unimodal function but it is not
an indicator of any interval. The analytical expression for the limit of
radius transforms of a 2D ball is given in (18).

2. In the multivariate case, when d ≥ 2, the volume plot of A is equal to
the volume plot of a piecewise constant approximation of the boundary
function of A, where the volume plot of a piecewise constant function
was defined in Klemelä (2004b).

The volume plot is defined only for the star shaped sets. The other shape
plots are defined for (some) connected sets. However, in order shape plots to
give easily interpretable information, we might have to assume that the sets
are close to being star shaped.
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Even when we would not apply the volume plot in practise, Definition 12
of the volume plot shows the connection to the boundary function in the 2
dimensional case, and it is shows the connection to the volume plot as defined
in Klemelä (2004b).

C Interpretation of the graphics

C.1 Shape of the generating sets.

We may replace the sequence of balls (Br(µ), r ∈ R) in Definition 1 of a shape
tree with some other sequence of sets. We may consider sequences (Sr(µ), r ∈
R), where Sr(µ) = {x ∈ Rd : ‖x− µ‖alt ≤ r} is a ball with some other norm
than the Euclidean norm. For example, we may take ‖x‖alt = maxi=1,...,d |xi|,
or ‖x‖2

alt = xTAx, for some matrix A, so that Sr(µ) is a rectangle or an ellips.
We call the sets in sequence (Sr(µ), r ∈ R), the generating sets of the shape
tree.

The shape transforms of A ⊂ Rd are unimodal when A = Sr(µ) for some
r ∈ R, and (Sr(µ), r ∈ R) are the generating sets of the shape tree. Thus we
may test the hypothesis of a certain shape of the level set by constructing a
shape tree with a sequence of generating sets containing this shape. If the
shape transforms are multimodal we reject the hypothesis.

There are at least two reasons to prefer the Euclidean distance: (1) the
balls are the only symmetric sets, with shape trees we visualize in a sense
deviations from the basic shape determined by the norm, and it is more easy
to understand deviations from a symmetric shape than from an asymmet-
ric shape, (2) the hypothesis of standard Gaussianity is justified in many
applications.

C.2 Level sets and the shape of the density

Figure 20 shows volume plots of level set trees for different dimensions of the
Bartlett density. Figure 21 shows volume plots of level set trees of Gaussian
densities for different dimensions. We define the multivariate Bartlett density
as

f(x) = Cκd
(

1 − ‖κx‖2
)

+

where (x)+ = max{0, x}, κ > 0, C is the normalization constant,

C =
d(d+ 2)

2µ(Sd)
(16)
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Figure 20: Volume plots of level set trees of Bartlett densities with κ = 2
for dimensions 1 − 4, 20, and 21.

and µ(Sd) is the volume of the unit sphere Sd = {x ∈ Rd : ‖x‖ = 1}:

µ(Sd) = 2πd/2/Γ(d/2). (17)

C.3 Unimodality

We may find an analytical expression for the radius transform of a ball. The
radius transform of a ball with radius R is

g(x) =

{

(R2 − (2/π)(x− (π/2)R2))
1/2

, 0 ≤ x ≤ (π/2)R2

(R2 + (2/π)(x− (π/2)R2))
1/2
, (π/2)R2 ≤ x ≤ πR2.

(18)

In Figure 9b we have drawn the radius transform by approximating the ball
with a union of rectangles.

C.4 Multivariate skew normal density

C.4.1 The definition

The multivariate skew normal density is

2fµ,Σ(x)Φ(((x1 − µ1)/σ1, . . . , (xd − µd)/σd) · α),

where fµ,Σ is the Gaussian density with the expectation µ = (µ1, . . . µd)
and covariance matrix Σ, whose diagonal is (σ2

1, . . . , σ
2
d), Φ is the distribu-

tion function of the standard Gaussian density, and α ∈ Rd is the skewness
parameter, see Azzalini and Dalla Valle (1996).
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Figure 22: Skewed Gaussian density; a probability content plot and a loca-
tion plot for the 0.02 level set, when the barycenter is the reference point.

C.4.2 The parameters of Figure 8

In Figure 7 we chose µ = (0, 0), (σ1, σ2) = (3, 1), α = (6, 0), and then this
density was rotated 135 degrees in the clockwork direction.

C.4.3 The location plot corresponding to the probability content
plot in Figure 8d

The location plot corresponding to the probability content plot of Figure 8d
is shown in Figure 22, frames b and d. The probability content plot itself is
shown again in Figure 22a.
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C.5 Clayton family

C.5.1 The definition

Clayton density fc,θ : R2 → R, with standard Gaussian marginals, with
parameter θ > 0, is defined as

fc,θ(x1, x2)

= (1 + θ)
[

Φ(x1)
−θ + Φ(x2)

−θ − 1
]−2−1/θ

(Φ(x1)Φ(x2))
−θ−1φ(x1)φ(x2),

where (x1, x2) ∈ R2, Φ is the standard Gaussian distribution function and φ
is the standard Gaussian density function.

C.5.2 The parameters of Figure 10

Figure 10a shows the contour plots of the 10% level sets, with θ = 1, θ = 2,
and θ = 4, and frames b, c, and d show the corresponding radius plots. When
the parameter θ increases, then the dependence between coordinate variables
increases.

C.6 Densities with Student copula

C.6.1 Definition

The density of the student copula, with parameters ν and ρ ∈ (−1, 1), with
standard Gaussian margins, is defined by

fs,ν,ρ(x1, x2) =
Γ((ν + 2)/2)

Γ(ν/2)νπ
√

1 − ρ2

φ(x1)φ(x2)

tν(z(x1))tν(z(x2))

×

(

1 +
z(x1)

2 + z(x2)
2 + 2ρz(x1)z(x2)

ν(1 − ρ2)

)−(ν+2)/2

,

where (x1, x2) ∈ R2, z(u) = T−1
ν (Φ(u)), Φ is the standard Gaussian dis-

tribution function, φ is the standard Gaussian density function, T−1
ν is the

inverse of the distribution function of the Student distribution with degrees
of freedom ν, and tν is the density of the Student distribution with degrees
of freedom ν.

C.6.2 The parameters of Figure 11

In Figure 11 we have ν = 3 and ρ = 0.3.
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Figure 23: The positions of the slices.

C.7 Marginal densities and slices

We draw slices of the 2D density shown in Figure 3a. Note that it is the
simplest case to use 1D marginal densities and slices to make inference on the
shape a two dimensional density and it is essentially more difficult to make
inference from, say a 5-dimensional density using 2-dimensional marginal
densities.

Slices along the coordinate axes. Figure 23 shows a contour plot of the
density and the positions of the slices. Figure 24 shows the slices parallel to
the x-axis and Figure 25 shows the slices parallel to the y-axis.

Rotated slices. To rotate the slices is equivalent to rotating the density.
We will rotate the density 45 degrees and look at the slices parallel to co-
ordinate axes. Figure 26 shows the positions of the slices. Figure 27 shows
the slices parallel to the x-axis and Figure 28 shows the slices parallel to the
y-axis.

D Algorithms

D.1 Illustration of the LeafsFirst algorithm

Figure 29 illustrates the algorithm. We have approximated the ball with
a union of 302 rectangles. Figure 29a shows colored the rectangle which
is furthest away from the origin, and will be the rectangle associating the
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Figure 26: The positions of the slices.

first leaf node. Figure 29b shows a discretization effect: the “true shape
tree”, which is the limit of the approximations when we let the number
of rectangles grow and the step in the grid of radii become smaller, would
have 1 leaf. However, for the discretized set we have some spurious leafs.
Figure 29c shows the phase just before we have joined all the branches of
the tree. Figure 29d shows the phase where we have almost reached the root
node.

Figure 30 shows the radius plot and the corresponding location plot of
the shape tree which is grown with the steps shown in Figure 29.

D.2 Grid of radii

We have shown in Section D.1 that shape trees may contain spurious modes.
The method and accuracy of the approximation of the set affects the number
of spurious modes. The second factor affecting the number of spurious modes
is the fineness of the grid of radii.

Figure 31 shows the effect of the discretization in the case of a ball. We
have approximated the ball with 1202 rectangles. Frame a) shows the radius
plot with a grid of 10 radii. The radius transform is unimodal. Frame b)
shows the radius plot with a grid of 29 radii, and the radius transform is still
unimodal. Frame c) shows the radius plot with a grid of 30 radii and the
radius transform has now 8 modes.

One notes that the “spurious” modes do not have disturbing effects on the
radius plot. However, the location plot looks messy with the large number
of spurious modes. Figure 31d shows the location plot for the 1st coordinate
corresponding to the radius plot of Figure 31c.
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Figure 30: The radius plot and the location plot corresponding to the shape
tree grown in Figure 29.
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Figure 31: Radius plots with different grid of radii. The radius plots visualize
the sphere.
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D.3 The bounding box enhancement of step 4 of algo-
rithm LeafsFirst

We present a pseudo code for enhancing step 4 of the algorithm LeafsFirst.

1. Input is a rectangle R and the collection of the current root nodes of
the shape tree (we are building the shape tree starting from the leaf
nodes and thus the current root nodes of the unfinished shape tree are
the nodes without parent).

2. Output is the list of those current root nodes which are touched by
rectangle R (list of those current root nodes whose associated set is
touched by rectangle R).

3. An additional internal data structure of the algorithm are the anno-
tations of each node of the (unfinished) shape tree with the bounding
box of the set associated with the node.

ALGORITHM Bounding box enhancement
(of step 4 of algorithm LeafsFirst)

1. answer=emptyList (at the beginning we assume that there are no
touches);

2. loop 1: go through the current root nodes, assume we have encoun-
tered current root node mr;

3. loop 2: go through the nodes of the tree whose root is mr, starting
with node mr, in such a way that the parent is always encountered
before children;

4. consider node m associated with rectangle Rm and bounding box Bm;

(a) if rectangle R does not touch bounding box Bm, then (conclude
that R does not touch the set associated with node m, and thus
does not touch the set associated with mr), goto loop 1;

(b) else (R touches bounding box Bm) if R touches the rectangle Rm,
then (conclude that R touches the set associated with node m,
and thus touches the set associated with node mr) concatenate
mr to the answer, goto loop 1;

(c) else (R touches the bounding box, but does not touch rectangle
Rm) continue loop 2;

5. return answer.

48



0.10 0.15 0.20

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

M1

a) 1st coordinate

−0.05 0.00 0.05 0.10 0.15

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

M1

b) 2nd coordinate

−0.05 0.00 0.05 0.10

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

M1

c) 3rd coordinate

0.0 0.2 0.4 0.6

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

M1

d) 4th coordinate

Figure 32: Barycenter plot of a level set tree of the estimate of the stock index
return data. Frame a) shows SP500, frame b) DAX30, frame c) FTSE100,
and frame d) Nikkei225.

D.4 Practical application of the algorithms

We make two remarks concerning the practical application of the algorithms.

1. Sometimes density estimates have minor modes, for example in the tail
regions of the density, and we may want to apply the shape trees to
visualize these estimates without the prior clustering of the level set to
connected components. When we apply algorithm LeafsFirst to a set
which is not connected, then the output of the algorithm will be a tree
with several root nodes. The additional root nodes do not typically
have any major disturbing effects on the visualizations.

2. A reasonable approach for calculating a shape tree is to first use Leafs-
First algorithm to calculate a shape tree with the finest grid of radii,
given by the rule (9). After that one prunes the shape tree, creating a
smaller shape tree with a sparser grid of radii. Pruning the tree may
give two advantages: (1) we get rid of some of the spurious modes, and
(2) the size of the data structures representing the shape tree may be
reduced considerably without a major decrease in the quality of the
plots. One should try several grid of radii and be careful not to delete
some true modes by using too sparse grid of radii.

E Example:Stock index data, 2D slice

E.1 A barycenter plot of a level set tree of the estimate

Figure 32 shows a barycenter plot of a level set tree of the estimate. One
may note that the estimate is skewed in the 4th coordinate (Nikkei225).
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Figure 33: Frame a shows a contour plot of a 2D slice (SP500 and Nikkei225),
and frame b shows the 10% level set of this 2D slice.

E.2 A slice of the estimate

Figure 33a shows the 2D slice g(x1, x4) = f̂(x1, 0.13,−0.09, x4) corresponding
to SP500 and Nikkei225. Figure 33b shows the 10% level set of the slice. We
see that the probability mass is spread widely over the positive region of
Nikkei225.

F Further discussion

Raw data vs. smoothing. A large part of the statistical visualization
literature discusses the visualization of the raw data (scatter plots). We
discussed the visualization of density estimates: we first smooth the data
and then visualize the density estimate. Multivariate functions are much
more complex objects than data matrices. However, we claim that with the
help of level set trees and shape trees we have efficient visualization tools to
visualize multivariate density estimates and thus to make inference on the
shape of multivariate densities.

Decoupling the shape information and the spatial information.
Two dimensional star shaped sets may be visualized with 1D boundary func-
tions. It is a natural question how to generalize this visualization to higher
dimensional cases. We have solved this problem by decoupling the shape
information and the spatial information. The shape plots show the pure
shape information and the location plot nails down the shape at the certain
locations.
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Visualization of sets. We have visualized multivariate functions by vi-
sualizing their level sets. However, there are also many situations where we
want to visualize sets which are not level sets of any function. For example,
we may want to visualize the classification sets of a supervised classification
procedure (discriminant analysis). Connected sets may be visualized with
the radius plot and with the corresponding location plot.

Hypothesis testing. Statistical inference may proceed by formulating a
null hypothesis, and designing a formal testing procedure; finding a test
statistic whose distribution is known under the null hypothesis. For exam-
ple, one may take as the null hypothesis the assumption of unimodality, or
the assumption of Gaussianity. The graphical tools based on shape trees may
accompany such statistical tests. For example, when we reject the hypoth-
esis of Gaussianity, the result of the test does not give information how the
hypothesis is violated. Visualization of density estimates gives us clues how
the true density is differing from a Gaussian density.

Parsimonious tools. Given a multivariate density we might be interested
whether the the variation of the function is equally large in every direction;
whether the tails of the function are equally fat in every direction. In the
d-dimensional Euclidean space there are 2d directions where the tails of the
density may be extending, and it is not feasible to study every direction
separately. However, when the level sets of the density are given as unions of
rectangles, then algorithms for calculating shape trees give a parsimonious
way to find and visualize the tail behavior of the density.
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