kernesti.der | R Documentation |
Computes the value of a multivariate kernel estimator of a partial derivative of a regression function at a one point.
kernesti.der(arg, x, y, h=1, direc=1, kernel="gauss", vect=FALSE)
arg |
d-vector; the point where the estimate is evaluated |
x |
n*d data matrix; the matrix of the values of the explanatory variables |
y |
n vector; the values of the response variable |
h |
a positive real number; the smoothing parameter of the kernel estimate |
direc |
integer 1,...,d; indicates which partial derivative is estimated |
kernel |
a character; determines the kernel function; can only be "gauss" |
vect |
TRUE or FALSE; an internal parameter related to the method of calculation |
a real number
Jussi Klemela
pcf.kernesti.der
,
set.seed(1) n<-100 d<-2 x<-8*matrix(runif(n*d),n,d)-3 C<-(2*pi)^(-d/2) phi<-function(x){ return( C*exp(-sum(x^2)/2) ) } D<-3; c1<-c(0,0); c2<-D*c(1,0); c3<-D*c(1/2,sqrt(3)/2) func<-function(x){phi(x-c1)+phi(x-c2)+phi(x-c3)} y<-matrix(0,n,1) for (i in 1:n) y[i]<-func(x[i,])+0.01*rnorm(1) arg<-c(0,0) kernesti.der(arg,x,y,h=0.5)