linear.quan | R Documentation |
Computes the estimates of parameters for a linear quantile regression estimator.
linear.quan(x, y, p=0.5)
x |
n*d data matrix; the matrix of the values of the explanatory variables |
y |
n vector; the values of the response variable |
p |
0<p<1; the p:th conditional quantile function will be estimated |
numerical optimization is used in the calculation
list of beta0 and beta1; beta0 is a real number and beta1 is a d vector; beta0 is the estimate of the intercept and beta1 is the vector containing the estimates of the coefficients
Jussi Klemela
linear
,
set.seed(1) n<-100 d<-2 x<-8*matrix(runif(n*d),n,d)-3 C<-(2*pi)^(-d/2) phi<-function(x){ return( C*exp(-sum(x^2)/2) ) } D<-3; c1<-c(0,0); c2<-D*c(1,0); c3<-D*c(1/2,sqrt(3)/2) func<-function(x){phi(x-c1)+phi(x-c2)+phi(x-c3)} y<-matrix(0,n,1) for (i in 1:n) y[i]<-func(x[i,])+0.01*rnorm(1) linear.quan(x,y)