pcf.kern.quan | R Documentation |
Computes the values of an estimator of a conditional quantile function on a regular grid.
pcf.kern.quan(x, y, h, N, p=0.5, kernel="gauss", support=NULL)
x |
n*d data matrix; the matrix of the values of the explanatory variables |
y |
n vector; the values of the response variable |
h |
a positive real number; the smoothing parameter of the kernel estimate |
N |
vector of d positive integers; the number of grid points for each direction |
p |
0<p<1; the p:th quantile function will be estimated |
kernel |
a character; determines the kernel function; "gauss" or "uniform" |
support |
either NULL or a 2*d vector; the vector gives the d intervals of a rectangular support in the form c(low_1,upp_1,...,low_d,upp_d) |
a piecewise constant function
Jussi Klemela
pcf.kernesti
,
n<-100 d<-2 x<-8*matrix(runif(n*d),n,d)-3 C<-(2*pi)^(-d/2) phi<-function(x){ return( C*exp(-sum(x^2)/2) ) } D<-3; c1<-c(0,0); c2<-D*c(1,0); c3<-D*c(1/2,sqrt(3)/2) func<-function(x){phi(x-c1)+phi(x-c2)+phi(x-c3)} y<-matrix(0,n,1) for (i in 1:n) y[i]<-func(x[i,])+0.01*rnorm(1) num<-30 # number of grid points in one direction pcf<-pcf.kern.quan(x,y,h=0.5,N=c(num,num)) dp<-draw.pcf(pcf,minval=min(y)) persp(dp$x,dp$y,dp$z,phi=30,theta=-30) contour(dp$x,dp$y,dp$z,nlevels=30)