pcf.kernesti.slice | R Documentation |
Computes the values of a univariate slice of multivariate kernel regression estimator (Nadaraya-Watson estimator) on a regular grid.
pcf.kernesti.slice(x, y, h, N, kernel="gauss", coordi=1, p=0.5, center=NULL, direc=NULL, radius=NULL)
x |
n*d data matrix; the matrix of the values of the explanatory variables |
y |
n vector; the values of the response variable |
N |
vector of d positive integers; the number of grid points for each direction |
h |
a positive real number; the smoothing parameter of the kernel estimate |
kernel |
a character; determines the kernel function; either "gauss" or "uniform" |
coordi |
integer 1,...,d; the direction of the slice |
p |
0<p<1; the slice goes through the p:th quantile, estimated from data x; this parameter is used if center=NULL |
center |
either NULL or a d-vector; gives the point which is intersected by the slice |
direc |
either NULL or a d-vector; gives the direction of the slice |
radius |
either NULL or a positive real number; gives the radius of the slice |
a piecewise constant univariate function
Jussi Klemela
kernesti.regr
,
n<-100 d<-2 x<-8*matrix(runif(n*d),n,d)-3 C<-(2*pi)^(-d/2) phi<-function(x){ return( C*exp(-sum(x^2)/2) ) } D<-3; c1<-c(0,0); c2<-D*c(1,0); c3<-D*c(1/2,sqrt(3)/2) func<-function(x){phi(x-c1)+phi(x-c2)+phi(x-c3)} y<-matrix(0,n,1) for (i in 1:n) y[i]<-func(x[i,])+0.01*rnorm(1) num<-30 # number of grid points in one direction pcf<-pcf.kernesti.slice(x,y,h=0.5,N=num) dp<-draw.pcf(pcf,minval=min(y)) plot(dp$x,dp$y,type="l")