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1 Adaptive regressograms

1.1 Regressogram.

Regressogram is a piecewise constant regression function estimator defined
as

f̂(x) =
∑

R∈P

ŶRIR(x), x ∈ Rd, (1)

where P is a partition of Rd and

ŶR =
1

nR

∑

i:Xi∈R

Yi,

with
nR = #{Xi : Xi ∈ R, i = 1, . . . , n}.

If x ∈ R, then the value of the regressogram is

f̂(x) = ŶR.

Note that when K(x) = I[−1,1]d(x), then the kernel weights are

pi(x) =

{

1/nR, if x ∈ R,
0 otherwise,

where R = [x − h, x + h] and h > 0 is the smoothing parameter.

1.2 Greedy regressograms

Greedy regressograms are regressograms where the partition of the space of
explanatory variables is found by a stepwise algorithm, which recursively
splits the space to finer sets. This algorithm is called greedy because we do
not try to find a global minimum for the optimization problem but find the
opimizer one step at a time.
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Pool of split points First we have to define the pool of split points over
which we search the best splits. One may either (1) construct a regular
equispaced grid for each direction or (2) one may construct an empirical grid
for each direction from the midpoints of the coordinates of the observations.
Let us denote the pool of split points by

G = G1 × · · · × Gd, (2)

where Gk is the grid of split points in direction k. For example, in the case
of the empirical grid we have

Gk = {Zk
1 , . . . , Zk

n−1}, k = 1, . . . , d,

where Zk
i is the midpoint of Xk

(i) and Xk
(i+1): Zk

i = Xk
(i) + (Xk

(i+1) − Xk
(i))/2,

where Xk
(1), . . . , X

k
(n) is the order statistic of the kth coordinate of the obser-

vations X1, . . . , Xn.

Splitting The elementary splits are such that the rectangle R ⊂ Rd is
splitted through the point s ∈ R in direction k = 1, . . . , d to obtain sets

R
(0)
k,s = {(x1, . . . , xd) ∈ R : xk ≤ s} (3)

and
R

(1)
k,s = {(x1, . . . , xd) ∈ R : xk > s}. (4)

More precisely, we assume that the split point s satisfies

s ∈ SR,k
def
= Gk ∩ int(projk(R)), (5)

where Gk are the grid points in the kth direction, defined by (2), projk(R) =
Rk, when R = R1 × · · ·×Rd, and int(Rk) is the interior of set Rk. Above we
take int(Rk) instead of Rk to exclude the case that a split would be made at
the boundary of Rk.

1.2.1 Pointwise estimate

We consider the case of estimating the regression function only at one point
x ∈ Rd. Since we want to use a regressogram, the problem can be stated as
the problem of finding a rectangle R ⊂ Rd so that x ∈ R and the estimate

f̂(x) = ŶR

is the most accurate, where

ŶR =
1

#{Xi ∈ R}

∑

i:Xi∈R

Yi. (6)

The neigborhood R is found by the following procedure.
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• Make M splits in the following way.

– Split the current rectangle so that the empirical risk of the corre-
sponding regressogram, over the current rectangle, is minimized.

At each step the minimization is done over over all directions, and over all
split points in the current rectangle and in the given direction.

We shall define the algorithm more precisely in the following. The al-
gorithm takse into account the fact that it may happen that the number of
splits M is so large that we have to stop splitting before reaching the given
number of splits M . We cannot split a neigborhood after we have reached
the finest resolution level, defined by the pool of split points in (2). Also, it
is reasonable to restrict the growing of the partition so that we do not split
rectangles which contain less observations than a given threshold m.

Definition 1 (Greedy neigborhood.) The greedy neigborhood R ⊂ Rd,
with split bound M ≥ 0, with minimal observation number m ≥ 1, is defined
recursively by the following rules.

1. Start with set R0 = Rd.

2. For L = 1, . . . , M : assume that we have found set RL−1.

(a) Let
IRL−1

= {(k, s) : k = 1, . . . , d, s ∈ SRL−1,k},

where SR,k is the set of split points defined in (5). We construct

new sets R
(0)

k̂,ŝ
and R

(1)

k̂,ŝ
, where we use the notation defined in (3)

and (4), and

(

k̂, ŝ
)

= argmin(k,s)∈IRL−1
ERR (RL−1, k, s) , (7)

where

ERR(R, k, s) =
∑

i:Xi∈R
(0)
k,s

(

Yi − Ŷ
R

(0)
k,s

)2

+
∑

i:Xi∈R
(1)
k,s

(

Yi − Ŷ
R

(1)
k,s

)2

(8)
and ŶR is defined in (6). Finally, the new set is chosen as RL =

R
(0)

k̂,ŝ
if x ∈ R

(0)

k̂,ŝ
, and RL = R

(1)

k̂,ŝ
otherwise.

(b) If #{Xi ∈ RL} > m, then we continue splitting RL. If #{Xi ∈
RL} = m, then we choose R = RL and stop splitting. If #{Xi ∈
RL} < m, then we stop splitting, reject RL, and choose R = RL−1.
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Definition 2 (Greedy pointwise regressogram.) Let x ∈ Rd and let Rx be
the greedy neigborhood defined in Definition 1. The greedy regressogram is
defined by

f̂(x) =
1

#{Xi ∈ Rx}

∑

i:Xi∈Rx

Yi, x ∈ Rd.

1.2.2 Global estimate

The global partition is found by the following procedure.

• Repeat the following step until the partition has M rectangles.

– Split a rectangle in the current partition so that the empirical risk
of the corresponding regressogram is minimized.

At each step the minimization is done over all rectangles in the current
partition, over all directions, and over all split points in the given rectangle
and in the given direction. We shall define the algorithm more precisely in
the following.

We define a greedy partition for a given cardinality bound M ≥ 1. It may
happen that M is so large that we have to stop growing the partition before
reaching the cardinality M . We cannot grow the partition after we have
reached the finest resolution level, defined by the pool of split points in (2).
Also, it is reasonable to restrict the growing of the partition so that we do not
split rectangles which contain less observations than a given threshold. The
partition is grown by minimizing an empirical risk of the estimator, which is
typically defined as the sum of squared errord of the estimator f̂ :

γn

(

f̂
)

=

n
∑

i=1

(

Yi − f̂(Xi)
)2

.

We say that partition P is grown if it is replaced by partition

PR,k,s = P \ {R} ∪
{

R
(0)
k,s, R

(1)
k,s

}

, (9)

where rectangle R ∈ P is splitted in direction k = 1, . . . , d through the point
s ∈ SR,k.

Definition 3 (Greedy partition.) The greedy partition, with cardinality
bound M ≥ 1, and with minimal observation number m ≥ 1, is defined
recursively by the following rules.

1. Start with the partition P1 = {R0}, where R0 = Rd.
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2. For L = 1, . . . , M − 1: assume that we have constructed partition PL

of cardinality L.

(a) Partition PL is the final partition when I = ∅, where

I = {(R, k, s) : R ∈ PL, #{Xi ∈ R} ≥ m,

k = 1, . . . , d, s ∈ SR,k},

where SR,k is the set of split points defined in (5). That is, we
stop growing when there does not exist rectangles R which would
contain at least m observations and for which the finest resolution
level is not reached for each direction.

(b) Otherwise, if partition PL is not the final partition, we construct
new partition PR̂,k̂,ŝ, where

(

R̂, k̂, ŝ
)

= argmin(R,k,s)∈IERR (PR,k,s) , (10)

where PR,k,s is the partition defined in (9),

ERR(P) = γn

(

f̂( · ,P)
)

, (11)

and f̂ is regressogram defined in (1).

Definition 4 (Greedy regressogram.) Let P̂M be the greedy partition defined
in Definition 3. The greedy regressogram corresponding to P̂M is defined by

f̂M = f̂( · , P̂M)

where f̂ is defined in (1).

2 Illustrations

We look at the following code in

http://cc.oulu.fi/˜jklemela/finatool/

# we obtain returns of the DAX stock index

ticker<-c("^GDAXI")

destfile<-"~/pois"

ry<-read.yahoo(ticker, source="web", destfile=destfile)
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dm<-data.manip(ry,ticker)

method<-"return"

S<-returns(dm$data,method=method)

n<-length(S)

plot(S,type="l")

# we calculate volatilities for the 5 day periods

perlen<-5

pernum<-floor(n/perlen)

volas<-matrix(0,pernum,1)

for (i in 1:pernum){

beg<-(i-1)*perlen+1

end<-(i-1)*perlen+perlen

period<-S[beg:end]

volas[i]<-sqrt(sum(period^2)/perlen)*sqrt(252)

}

plot(volas,type="l")

# 1D case

# we try to pedict the volatility of a 5 day period with the

# help of the volatility of the previous 5 day period

dendat<-matrix(0,pernum-1,2)

for (i in 1:(pernum-1)){

dendat[i,1]<-volas[i]

dendat[i,2]<-volas[i+1]

}

plot(dendat)

# we estimate the regression function

x<-matrix(dendat[,1],length(dendat[,1]),1)

y<-matrix(dendat[,2],length(dendat[,2]),1)

plot(x,y)

M<-2

m<-3

splitfreq<-1

t<-seq(0,1,0.05)
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u<-matrix(0,length(t),1)

for (i in 1:length(t)) u[i]<-greedy(x,y,t[i],M,m,splitfreq)$val

matplot(x,y) #,add=TRUE)

matplot(t,u,type="l",add=TRUE,col="red")#xlim=c(0,1.1),ylim=c(0,1.1))

M<-10

m<-1

arg<-0.6

gr<-greedy(x,y,arg,M,m)

matplot(x,y)

matplot(gr$x,gr$y,add=TRUE,col="red")

# we make a logarithmic transform for the x-variable

x<-matrix(log(dendat[,1]),length(dendat[,1]),1)

y<-matrix(dendat[,2],length(dendat[,2]),1)

plot(x,y)

M<-2

m<-5

splitfreq<-1

t<-seq(-3.5,0.1,0.05)

u<-matrix(0,length(t),1)

for (i in 1:length(t)) u[i]<-greedy(x,y,t[i],M,m,splitfreq=splitfreq)$val

matplot(x,y) #,add=TRUE)

matplot(t,u,type="l",add=TRUE,col="red")#xlim=c(-3.5,0.1),ylim=c(0,1.1))

# 2D case

# we use now the volatilities of two periods to predict

# the volatility of the next period

dendat<-matrix(0,pernum-2,3)

for (i in 1:(pernum-2)){

dendat[i,1]<-volas[i]

dendat[i,2]<-volas[i+1]

dendat[i,3]<-volas[i+2]

}

plot(dendat[,1],dendat[,2])

library(scatterplot3d)
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scatterplot3d(dendat)

# we make the logarithmic transform for the explanatory variables

# and estimate the regression function

x<-matrix(0,dim(dendat)[1],2)

x[,1]<-log(dendat[,1])

x[,2]<-log(dendat[,2])

plot(x)

y<-dendat[,3]

scatterplot3d(x[,1],x[,2],y)

M<-5

m<-5

t<-seq(-3.5,0.1,0.1)

u<-t

z<-matrix(0,length(t),length(u))

for (i in 1:length(t))

for (j in 1:length(u))

z[i,j]<-greedy(x,y,c(t[i],u[j]),M,m)$val

contour(t,u,z) #,drawlabels=FALSE)

persp(t,u,z,phi=30,theta=30)

3 Examination

A possible question in the examination:

6) (a) Define a regressogram.

(b) Compare the definition of the regressogram to the definition of
the kernel estimator with the kernel K = I[−1,1]d.
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