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1 Additive models

In an additive model we assume that the regression function has the form
d
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where ¢ € R is an unknown intercept and g; : R — R, 7 = 1,...,d, are
unknown univariate functions. The difficulty of estimation in this model is
equal to the difficulty of estimation in a univariate regression model. We use
the notation x = (z1,...,74) forx € R%and X = (X*,..., X9) for a random
variable X € R?. For identifiability we assume that

Eg;(X7) =0, j=1,...,d.
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and we can estimate the constant ¢ by
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Backfitting The backfitting algorithm is an iterative algorithm which is
based on the idea that if we have estimates o, ..., gq for gs,..., g4, and an
estimate ¢ for ¢, then we can apply a univariate nonparametric estimator to
estimate g; using the data

Vim b= go(XB) == gu(XD), i=1m,

to estimate g;. We describe below the backfitting algorithm.
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1. Choose ¢ =+ 3" | V.
2. Initialize g; =0for j =1,...,d.
3. We iterate the following steps until the sum of squared errors
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is sufficiently small.

(a) We go through all coordinates: for j =1,...,d.

i. Let
d

Vij=Yi—¢= > aX), i=1....n
I=1,1#
be the residual for the jth coordinate.
ii. Let g; be an 1D regression function estimate, based on data

(Yi;, X)), i=1,...,n.
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2 Stagewise methods

Stagewise construction of a regression function estimate may be called boost-
ing. Boosting produces an estimator which is a combination of simple esti-
mators, and each estimator is constructed using the residual error as the
response variable. We assume to have a method for regression function es-
timation which produces an estimator g, based on regression data (Z;, X;),
i=1,...,n, where Z; € R and X; € R

1. Find the initial estimator gy using the data (Y;, X;), i =1,...,n.
2. Form=1,..., M:

(a) Compute the residuals

Y~;:Y;_ gl(Xl)a Zzlaan



3. The final estimator is f = fM.

Examples for the choice of ¢ include the following.
1. The stump is a greedy regressogram with only one split point.

2. Component-wise kernel estimator is such that for each j =1,...,d we
find the kernel estimator ¢/ using data (Z;, ij)’ i=1,...,n, and the
final kernel estimator g is chosen to be the one minimizing the residual
sum of sqaures:
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Note that both of the following choices for the base learner lead to a final
estimate f which has the additive structure:
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for some fj : R — R. The difference to the additive estimate obtained
by backfitting in Section 1 is that the additive components are obtained
by adding new terms to the previous component, instead of replacing the
previous component.

3 Illustrations
We look at the following code about additive models at
http://cc.oulu.fi/~jklemela/finatool/

# we obtain returns of the DAX stock index

ticker<-c(""GDAXI")

destfile<-""/pois"

ry<-read.yahoo(ticker, source="web", destfile=destfile)
dm<-data.manip(ry,ticker)

method<-"return"

S<-returns (dm$data,method=method)

n<-length(S)

plot(S,type="1")



# we calculate volatilities for the 5 day periods

perlen<-5
pernum<-floor(n/perlen)
volas<-matrix(0,pernum,1)
for (i in 1:pernum){
beg<-(i-1)*perlen+l
end<-(i-1)*perlen+perlen
period<-S[beg:end]
volas[i]<-sqrt(sum(period~2)/perlen)*sqrt(252)
}
plot(volas,type="1")

# we use now the volatilities of two periods to predict
# the volatility of the next period

dendat<-matrix(0,pernum-2,3)
for (i in 1:(pernum-2)){
dendat[i,1]<-volas[i]
dendat [i,2]<-volas[i+1]
dendat[i,3]<-volas[i+2]
}
plot(dendat[,1],dendat[,2])

library(scatterplot3d)
scatterplot3d(dendat)

# we make the logarithmic transform for the explanatory variables
# and estimate the regression function

x<-matrix(0,dim(dendat) [1],2)
x[,1]1<-log(dendat[,1])
x[,2]<-log(dendat[,2])
plot(x)

y<-dendat[, 3]
scatterplot3d(x[,1],x[,2],y)

h<-1
kernel<-"gauss"
M<-2



arg<-c(-1,-1)
additive(x,y,arg,h=h,kernel=kernel ,M=M)

t<-seq(-3.5,0.1,0.1)
u<-t
z<-matrix(0,length(t),length(u))
for (i in 1:length(t))
for (j in 1:length(u))
z[i,jl<-sum(additive(x,y,c(t[i],ulj]) ,h=h,kernel=kernel,M=M))

persp(t,u,z,phi=30,theta=30)

contour(t,u,z) #,drawlabels=FALSE)

4 Examination
Possible questions in the examination:

8) Describe the backfitting algorithm for the estimation of the regression
function in the additive model.

9) Describe an algorithm for stagewise construction of a regression func-
tion estimate (boosting).



