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1 Transformations

In regression function estimation it is often useful to transform the explana-
tory variables. We discuss two transformations: data sphering and copula
preprocessing.

Copula preprocessing. The copula transformation changes the marginal
distributions but keeps the copula (the joint distribution) the same. The
copula preprocessing of data matrix Xn = (xj

i ), i = 1, . . . , n, j = 1, . . . , d, is
defined in two steps.

1. We make each margin approximately uniformly distributed by the fol-
lowing transformation: let zj

i , i = 1, . . . , n, j = 1, . . . , d, be the number
of observations smaller or equal to xj

i , divided by n (zj
i is the rank of

xj
i , divided by n):

zj
i = n−1#{xj

l : xj
l ≤ xj

i , l = 1, . . . , n}.

2. When X ∼ Unif([0, 1]), then F−1(X) ∼ F , where F is any continuous
distribution function. We have made in step 1 each margin approxi-
mately uniformly distributed, and next we can make the margins to be
approximately normally distributed by defining

yj
i = Φ−1(zj

i ), i = 1, . . . , n, j = 1, . . . , d,

where Φ is the distribution function of the standard Gaussian distribu-
tion. The copula preprocessed data matrix is Yn = (yj

i ), i = 1, . . . , n,
j = 1, . . . , d.
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Data sphering. We can make the scales of variables compatible by nor-
malizing each column of the data matrix to have unit variance. Data sphering
is more extensive transformation; we make such linear transformation of data
that the covariance matrix becomes the identity matrix. The sphering is al-
most the same as the principal component transformation. In the principal
component transformation the covariance matrix is diagonalized but it is not
made the identity matrix.

1. Sphering of a random vector X ∈ Rd means that we make a linear
transform of X so that the new random variable has expectation zero
and the identity covariance matrix. Let

Σ = E(X − EX)T (X − EX)

be the covariance matrix and make the spectral representation of Σ:

Σ = AΛAT ,

where A is orthogonal and Λ is diagonal. Then

Y = Λ−1/2AT (X − EX)

is the sphered random vector. Indeed,

Cov(Y ) = Λ−1/2AT Cov(X)AΛ−1/2 = Λ−1/2AT ΣAΛ−1/2 = Id.

2. Data sphering of the data means that the data matrix is transformed
so that the arithmetic mean of each column is zero and the empirical
covariance matrix is the unit matrix. Let Σn be the empirical covariance
matrix,

Σn =
1

n

n
∑

i=1

(Xi − X̄n)(Xi − X̄n)T ,

where X̄n is the d× 1 column vector of arithmetic means. We find the
spectral representation of Σn,

Σn = AnΛnA
T
n ,

where Λn is a diagonal matrix. The sphered data matrix is

Yn =
(

Xn − 1n×1X̄
T
n

)

× AnΛ−1/2
n ,

where Xn is the original n×d data matrix, and 1n×1 is the n×1 column
vector of ones.
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Figure 1: (Independent uniform marginals.) The figure illustrates data pre-
processing with data whose marginals are independent and uniformly dis-
tributed. Frame a) shows a scatter plot of the data, frame b) shows the
sphered data, and frame c) shows the copula transformed data.

Illustrations We illustrate data sphering and the copula transform.

1. Figure 1(a) shows a scatter plot of a simulated sample of size 500, where
the marginals are uniform on [0, 1] and independent from each other.
Frame b) shows sphered data and frame c) shows copula transformed
data, where the marginals are approximately standard Gaussian. The
data in frame c) is distributed as standard 2D Gaussian.

2. Figure 2(a) shows a scatter plot of exchange rates of Brazilian Real
and Mexican new Peso between 1995-01-05 and 2007-09-26. The rates
are with respect to one U.S. Dollar and transformed to returns (ri 7→
(ri− ri−1)/ri−i). There are 3197 observations. Frame b) shows sphered
data and frame c) shows copula transformed data, where the marginals
are approximately standard Gaussian. The data is provided by Federal
Reserve Economic Data (http://research.stlouisfed.org).

3. Figure 3(a) shows a scatter plot of the returns of the German stock
index DAX and the French stock index CAC between 1990-01-05 and
2008-01-14. There are 4277 observations. Frame b) shows sphered data
and frame c) shows copula transformed data, where the marginals are
approximately standard Gaussian. The marginals appear to be almost
independent. The data is provided by Yahoo.
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Figure 2: (Exchange rates.) The figure illustrates data preprocessing with
data of exchange rates of Brazilian Real and Mexican Peso (n=3197).
Frame a) shows a scatter plot of the data, frame b) shows the sphered data,
and frame c) shows the copula transformed data.
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Figure 3: (Stock indexes.) The figure illustrates data preprocessing with data
of the German stock index DAX and the French stock index CAC (n=4277).
Frame a) shows a scatter plot of the data, frame b) shows the sphered data,
and frame c) shows the copula transformed data.
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2 Empirical risk minimization

Let F be a class of functions Rd → R and let ǫ > 0. We define the empirical
risk minimizer f̂ : Rd → R to be such that

γn(f̂) ≤ inf
g∈F

γn(g) + ǫ,

where the most common definition for γn is the sum of squared errors:

γn(g) =

n
∑

i=1

(Yi − g(Xi))
2, g : Rd → R.

More generally, we can define

γn(g) =
n

∑

i=1

γ(Yi, g(Xi)).

Examples of the contrast function γ include

1. The power functions:
γ(y, z) = |y − z|p,

for p ≥ 1.

2. The ǫ-sensitive loss function

γ(y, z) = I[ǫ,∞)(|y − z|)(|y − z)| − ǫ),

for ǫ > 0.

The linear least squares estimator is obtained by choosing

F = {β0 + βTx : β0 ∈ R, β1 ∈ Rd}.

2.1 Local empirical risk

Local constant estimator We can define the weighted empirical risk by

γn(θ, x) =
n

∑

i=1

pi(x)(Yi − θ)2, θ ∈ R,

where the weights pi(x) can be chosen as the kernel weights

pi(x) =
Kh(x − Xi)

∑n
j=1 Kh(x − Xj)

,
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where K : Rd → R is a kernel function, Kh(x) = K(x/h)/hd, and h > 0 is
the smoothing parameter. Let

f̂(x) = argminθγn(θ, x), x ∈ Rd.

The solution to the minimization problem is

f̂(x) =

n
∑

i=1

pi(x)Yi, x ∈ Rd.

The is estimator is identical to the kernel estimator.

Local linear estimator A local linear estimator is

f̂(x) = α̂(x) + β̂(x)T x, x ∈ Rd,

where α̂(x) and β̂(x) are defined by

(α̂(x), β̂(x)) = argminα∈R,β∈Rdγn(α, β, x),

where

γn(α, β, x) =
n

∑

i=1

pi(x)
[

Yi − α − βT Xi

]2
, α ∈ R, β ∈ Rd, x ∈ Rd.

We can find an explicite expression for α̂(x) and β̂(x), similarily as in the
case of linear regression. Let us denote by X the n × (d + 1)-matrix whose
ith row is (1, XT

i ), where Xi is interpreted as a column vector of length d.
Let y be the column vector of length n whose ith element is Yi. Let W (x)
be the n × n diagonal matrix with diagonal elements pi(x). Then

b̂(x) = (α̂(x), β̂(x)T )T = (XTW (x)X)−1XT W (x)y.

Then we can write

f̂(x) =
n

∑

i=1

qi(x)Yi,

for certain weights qi(x) ≥ 1,
∑n

i=1 qi(x) = 1. Indeed,

qi(x) = pi(x)
s2(x) − s1(x)Xi

s2(x) − s2
1(x)

,

where

sk(x) =

n
∑

i=1

pi(x)Xk
i , k = 0, 1, 2, . . . .
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3 Examination

Possible questions in the examination:

10) Define the copula transform.

11) Define the locally linear estimator.
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