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PREFACE

The book is intended for students and researchers who want tolearn to apply non-
parametric and semiparametric methods and to use visualization tools related to these
estimation methods. In particular, the book is intended forstudents and researchers
in quantitative finance who want to apply statistical methods and for students and
researchers of statistics who want to learn to apply statistical methods in quantitative
finance. The book continues the themes of Klemelä (2009), which studied density
estimation. The current book focuses on regression function estimation.

The book was written at the University of Oulu, Department ofMathematical
Sciences. I wish to acknowledge the support provided by the University of Oulu and
the Department of Mathematical Sciences.

The web page of the book is http://cc.oulu.fi/∼jklemela/regstruct/.

Jussi Klemelä

Oulu, Finland

October 2013
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INTRODUCTION

We study regression analysis and classification, as well as estimation of conditional
variances, quantiles, densities, and distribution functions. The focus of the book is
on nonparametric methods. Nonparametric methods are flexible and able to adapt to
various kinds of data, but they can suffer from the curse of dimensionality and from
the lack of interpretability. Semiparametric methods are often able to cope with quite
high-dimensional data and they are often easier to interpret, but they are less flexible
and their use may lead to modeling errors. In addition to terms “nonparametric esti-
mator” and “semiparametric estimator”, we can use the term “structured estimator” to
denote such estimators that arise, for example, in additivemodels. These estimators
obey a structural restriction, whereas the term “semiparametric estimator” is used for
estimators that have a parametric and a nonparametric component.

Nonparametric, semiparametric, and structured methods are well established and
widely applied. There are, nevertheless, areas where a further work is useful. We
have included three such areas in this book:

1. Estimation of several functionals of a conditional distribution; not only esti-
mation of the conditional expectation but also estimation of the conditional
variance and conditional quantiles.

2. Quantitative finance as an area of application for nonparametric and semipara-
metric methods.

xix
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3. Visualization tools in statistical learning.

I.1 ESTIMATION OF FUNCTIONALS OF CONDITIONAL
DISTRIBUTIONS

One of the main topics of the book are the kernel methods. Kernel methods are
easy to implement and computationally feasible, and their definition is intuitive. For
example, a kernel regression estimator is a local average ofthe values of the response
variable. Local averaging is a general regression method. In addition to the kernel
estimator, examples of local averaging include the nearest-neighbor estimator, the
regressogram, and the orthogonal series estimator.

We cover linear regression and generalized linear models. These models can be
seen as starting points to many semiparametric and structured regression models.
For example, the single index model, the additive model, andthe varying coefficient
linear regression model can be seen as generalizations of the linear regression model
or the generalized linear model.

Empirical risk minimization is a general approach to statistical estimation. The
methods of empirical risk minimization can be used in regression function estimation,
in classification, in quantile regression, and in the estimation of other functionals of
the conditional distribution. The method of local empirical risk minimization is a
method which can be seen as a generalization of the kernel regression.

A regular regressogram is a special case of local averaging,but the empirical
choice of the partition leads to a rich class of estimators. The choice of the parti-
tion is made using empirical risk minimization. In the one- and two-dimensional
cases a regressogram is usually less efficient than the kernel estimator, but in high-
dimensional cases a regressogram can be useful. For example, a method to select
the partition of a regressogram can be seen as a method of variable selection, if the
chosen partition is such that it can be defined using only a subset of the variables.
The estimators that are defined as a solution of an optimization problem, like the min-
imizers of an empirical risk, need typically be calculated with numerical methods.
Stagewise algorithms can also be taken as a definition of an estimator, even without
giving an explicit minimization problem which they solve.

A regression function is defined as the conditional expectation of the distribution
of a response variable. The conditional expectation is useful in making predictions
as well as in finding causal relationships. We cover also the estimation of the condi-
tional variance and conditional quantiles. These are needed to give a more complete
view of the conditional distribution. Also, the estimationof the conditional variance
and conditional quantiles is needed in risk management, which is an important area
of quantitative finance. The conditional variance can be estimated by estimating
the conditional expectation of the squared random variable, whereas a conditional
quantile is a special case of the conditional median. In the time series setting the stan-
dard approaches for estimating the conditional variance are the ARCH and GARCH
modeling, but we discuss nonparametric alternatives. The GARCH estimator is close



QUANTITATIVE FINANCE xxi

to a moving average, whereas the ARCH estimator is related tolinear state space
modeling.

In classification we are not interested in the estimation of functionals of a distribu-
tion, but the aim is to construct classification rules. However, most of the regression
function estimation methods have a counterpart in classification.

I.2 QUANTITATIVE FINANCE

Risk management, portfolio selection, and option pricing can be identified as three
important areas of quantitative finance. Parametric statistical methods have been
dominating the statistical research in quantitative finance. In risk management,
probability distributions have been modeled with the Pareto distribution or with
distributions derived from the extreme value theory. In portfolio selection the multi-
variate normal model has been used together with the Markowitz theory of portfolio
selection. In option pricing the Black-Scholes model of stock prices has been widely
applied. The Black-Scholes model has also been extended to more general parametric
models for the process of stock prices.

In risk management thep-quantile of a loss distribution has a direct interpretation
as such threshold that the probability of the loss exceedingthe threshold is less than
p. Thus estimation of conditional quantiles is directly relevant for risk management.
Unconditional quantile estimators do not take into accountall available information,
and thus in risk management it is useful to estimate conditional quantiles. The
estimation of the conditional variance can be applied in theestimation of a conditional
quantile, because in location-scale families the variancedetermines the quantiles. The
estimation of conditional variance can be extended to the estimation of the conditional
covariance or the conditional correlation.

We apply nonparametric regression function estimation in portfolio selection. The
portfolio is selected either with the maximization of a conditional expected utility
or with the maximization of a Markowitz criterion. When the collection of allowed
portfolio weights is a finite set, then also classification can be used in portfolio
selection. The squared returns are much easier to predict than the returns themselves,
and thus in quantitative finance the focus has been in the prediction of volatility.
However, it can be shown that despite the weak predictability of the returns, portfolio
selection can profit from statistical prediction.

Option pricing can be formulated as a problem of stochastic control. We do not
study the statistics of option pricing in detail, but give a basic framework for solving
some option pricing problems nonparametrically.

I.3 VISUALIZATION

Statistical visualization is often considered as a visualization of the raw data. The
visualization of the raw data can be a part of the exploratorydata analysis, a first
step to model building, and a tool to generate hypotheses about the data-generating
mechanism. However, we put emphasis on a different approachto visualization.
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In this approach, visualization tools are associated with statistical estimators or
inference procedures. For example, we estimate first a regression function and
then try to visualize and describe the properties of this regression function estimate.
The distinction between the visualization of the raw data and the visualization of
the estimator is not clear when nonparametric function estimation is used. In fact,
nonparametric function estimation can be seen as a part of exploratory data analysis.

The SiZer is an example of a tool that combines visualizationand inference, see
Chaudhuri & Marron (1999). This methodology combines formal testing for the
existence of modes with the SiZer maps to find out whether a mode of a density
estimate of a regression function estimate is really there.

Semiparametric function estimates are often easier to visualize than nonparametric
function estimates. For example, in a single index model theregression function
estimate is a composition of a linear function and a univariate function. Thus in a
single index model we need only to visualize the coefficientsof the linear function
and a one-dimensional function. The ease of visualization gives motivation to study
semiparametric methods.

CART, as presented in Breiman, Friedman, Olshen & Stone (1984), is an example
of an estimation method whose popularity is not only due to its statistical properties
but also because it is defined in terms of a binary tree that gives directly a visualization
of the estimator. Even when it is possible to find estimators with better statistical
properties than CART, the possibility to visualization gives motivation to use CART.

Visualization of nonparametric function estimates, such as kernel estimates, is
challenging. For the visualization of completely nonparametric estimates, we can
use level set tree-based methods, as presented in Klemelä (2009). Level set tree-
based methods have found interest also in topological data analysis and in scientific
visualization, and these methods have their origin in the concept of a Reeb graph,
defined originally in Reeb (1946).

In density estimation we are often interested in the mode structure of the density,
defined as the number of local extremes, the largeness of the local extremes, and the
location of the local extremes. The local extremes of a density function are related to
the areas of concentration of the probability mass. In regression function estimation
we are also interested in the mode structure. The local maxima of a regression
function are related to the regions of the space of the explanatory variables where
the response variable takes the largest values. The antimode structure is equally
important to describe. The antimode structure means the number of local minima,
the size of the local minima, and the location of the local minima. The local minima of
a regression function are related to the areas of the space ofthe explanatory variables
where the response variable takes the smallest values.

The mode structure of a regression function does not give complete information
about the properties of the regression function. In regression analysis we are inter-
ested in the effects of the explanatory variables on the response variable and in the
interaction between the explanatory variables. The effectof an explanatory variable
can be formalized with the concept of a partial effect. The partial effect of an ex-
planatory variable is the partial derivative of the regression function with respect to
this variable. Nearly constant partial effects indicate that the regression function is
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close to a linear function, since the partial derivatives ofa linear function are con-
stants. The local maxima of a partial effect correspond to the areas in the space of
the explanatory variables where the increase of the expected value of the response
variable, resulting from an increase of the value of the explanatory variable, is the
largest. We can use level set trees of partial effects to visualize the mode structure
and the antimode structure of the partial effects, and thus to visualize the effects and
the interactions of the explanatory variables.

I.4 LITERATURE

We mention some of the books that have been used in the preparation of this book.
Härdle (1990) covers nonparametric regression with an emphasis on kernel regres-
sion, discussing smoothing parameter selection, giving confidence bands, and provid-
ing various econometric examples. Hastie, Tibshirani & Friedman (2001) describe
high-dimensional linear and nonlinear classification and regression methods, giv-
ing many examples from biometry and machine learning. Györfi, Kohler, Krzyzak
& Walk (2002) cover asymptotic theory of kernel regression,nearest-neighbor re-
gression, empirical risk minimization, and orthogonal series methods, and they also
include a treatment of time series prediction. Ruppert, Wand & Carroll (2003) view
nonparametric regression as an extension of parametric regression and treat them
together. Ḧardle, Müller, Sperlich & Werwatz (2004) explain single index models,
generalized partial linear models, additive models, and several nonparametric regres-
sion function estimators, giving econometric examples. Wooldridge (2005) provides
an asymptotic theory of linear regression, including instrumental variables and panel
data. Fan & Yao (2005) study nonlinear time series and use nonparametric function
estimation in time series prediction and explanation. Wasserman (2005) provides
information on nonparametric regression and density estimation with confidence
intervals and bootstrap confidence intervals. Horowitz (2009) covers semiparamet-
ric models and discusses the identifiability and asymptoticdistributions. Spokoiny
(2010) introduces local parametric methods into nonparametric estimation.

Bouchaud& Potters (2003)have developed nonparametric techniques for financial
analysis. Franke, Ḧardle & Hafner (2004) discuss statistical analysis of financial
markets, with emphasis being on the parametric methods. Ruppert (2004) is a
textbook suitable for statistics students interested in quantitative finance,and this book
discusses statistical tools related to classical financialmodels. Malevergne& Sornette
(2005) have analyzed financial data with nonparametric methods. Li & Racine (2007)
consider various non- and semiparametric regression models presenting asymptotic
distribution theory and the theory of smoothing parameterselection, directing towards
econometric applications.




