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1 Absolute Pricing

Let us consider a coin-tossing game where a participant receives one Euro
when heads occur and zero Euros when tails occurs. The probability of
getting heads is 1/2 and the probability of obtaining tails is 1/2. What is
the fair price to participate in this game? It can be argued that the fair price
is the expected gain:

0.5 · 1 Euros + 0.5 · 0 Euros = 0.5 Euros.

The fairness of the price can be justified by the law of large numbers. The law
of large numbers implies that the gain from repeated independent repetitions
of the game with price 0.5 Euros converges to zero with probability one. A
larger price than 0.5 Euros would give an almost sure profit to the organizer
of the game in the long run and a smaller price than 0.5 Euros would give
an almost sure profit to the player of the game in the long run.

It does not seem as clear what the price should be if we change the game
so that a participant receives one million Euros when heads occur and zero
Euros when tails occurs. Only few people would be willing to invest half a
million Euros in order to participate in this game. The law of large numbers
cannot be applied to justify a price because the probability of a bankruptcy
is quite large when a player repeats the game.1

It can be argued that the price of the game should be equal to the expected
utility: Let S be the random variable with P (S = u) = 0.5 and P (S = 0) =
0.5, where u = 1 million Euros. Then the expected utility is Eu(S), where
u : [0,∞) → R is a utility function.

1Note also that a doubling strategy gives an almost sure win. A player who follows the
classical doubling strategy doubles his bet until the first time he wins. If he starts with 1
Euro, his final gain is 1 Euro almost surely.
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The St. Petersburg paradox can be used to argue that a utility function
should be used. In the St. Petersburg paradox the banker flips the coin until
the heads come out the first time. The player receives 2k−1 coins when there
are k tosses of the coin (1 coin if the heads come out in the first toss, 2 coins
if the heads come out in the second toss, 4 coins if the heads come out in
the third toss, and so on). What is the fair entrance fee to the game? We
can calculate the expected gain. The probability that there are k tosses is
pk = 2−k. Thus the expected payoff is

∞
∑

k=1

pk2
k−1 =

∞
∑

k=1

1

2
= ∞.

Thus it would seem that the entrance fee could be arbitrarily high. However,
applying common sense, it does not seem reasonable to pay a high entrance
fee. The paradox can be solved by using a utility function to measure the
utility of the wealth. For example, the logarithmic utility function x 7→
loge(x) gives the expected utility of the game

∞
∑

k=1

pk loge(2
k−1) = loge 2,

which would give the price of 2 coins for the game.
Utility functions are rarely used in derivative pricing. We can assume that

we are close to the setting of coin flipping games with small bets relative to
the total wealth of the participants, so that utility functions do not play a
big role. (In the neighborhood of one we can approximate the logarithmic
function with a linear function.) Also, derivative prices have to be consistent
with the prices of the basic assets, so that the principles of relative pricing
are important.

2 Relative Pricing with Arbitrage

We illustrate relative pricing with arbitrage using a coin tossing example.
After that, arbitrage and the law of one price are discussed more generally.

2.1 Pricing in a One Period Binary Model

Let us consider two games related to the same tossing of a coin. The first
game is such that the player receives u Euros when heads occur and d Euros
when tails occurs, where u > d ≥ 0. The participation to this game is an
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analogy to buying a stock and we denote with S the random variable with
P (S = u) = 0.5 and P (S = d) = 0.5.

The second game is such that the player receives one Euros when heads
occur and zero Euros when tails occurs. The participation to this game
is an analogy to buying a derivative. The second game can be considered
as a derivative because the payoff of the second game is a random variable
H = f(S) for f : {u, d} → R, where f(u) = 1 and f(d) = 0. Random
variable H has the distribution P (H = 1) = 0.5 and P (H = 0) = 0.5. The
third asset is a bond with value B = 1. The price of bond is 1 and the price
of stock is denoted with π(S). We want to find the price of the derivative.

The derivative can be replicated with the bond and the stock: Consider
the portfolio with ξ1 bonds and ξ2 stocks. We choose

ξ1 =
−d

u− d
, ξ2 =

1

u− d
.

The portfolio is V = ξ1B + ξ2S and P (V = H) = 1, because

ξ1 + ξ2d = 0,

ξ1 + ξ2u = 1.

By the law of one price, to exclude the possibility of arbitrage, the price of
the derivative has to be equal with the price of the portfolio:2

π(H) = π(V ).

The price of the portfolio is

π(V ) = ξ1 + ξ2π(S).

Thus the price of the derivative is

π(H) =
π(S)− d

u− d
. (1)

The price of the derivative is in general not equal to 0.5. If π(S) = (u+d)/2,
then the price of the derivative is π(H) = 0.5. If π(S) < (u+ d)/2, then the
price of the derivative satisfies π(H) < 0.5.

We have given the price of the derivative in (1) in terms of the price of
the stock. This is an example of relative pricing: a price of an asset is given
in terms of the prices of the other assets.

2If π(H) < π(V ), then buying H and selling V would give an almost sure profit. If
π(H) > π(V ), then selling H and buying V would give an almost sure profit.
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2.2 Arbitrage and the Law of One Price

Arbitrage is a term used in common language and a technical term used in
mathematical finance. The absence of arbitrage implies the law of one price.

2.2.1 Arbitrage

Arbitrage is used in everyday language to denote a financial operation where
one obtains a profit with probability one by a simultaneous selling and buying
of assets. We give two examples of this type of arbitrage.

1. The stock of Daimler is listed both in Frankfurt and Stuttgart stock
exchanges. If the stock can be bought in Frankfurt with the price of
10 Euros and sold in Stuttgart with the price of 11 Euros, we obtain a
risk free profit of one Euro (minus the transaction costs).

2. Suppose the price of a stock is 10 Euros and a call option with strike
price K = 8 Euros with the expiration time in one week can be bought
with the price of 1 Euro. Then we can sell the stock short and buy the
call option. The profit of the operation will be −1 + 10 − 8 = 1 Euro
(buying the call costs 1 Euro, selling the stock short gives 10 Euros,
and exercising the option costs 8 Euros).

In general, we have a lower bound St−K for the price of a call option,
where St is the price of the stock at the time of buying the option, and
K is the strike price.

In mathematical finance an arbitrage is a financial operation whose payoff
is always non-negative and sometimes positive, that is, the probability of a
non-negative payoff is one and the probability of a positive payoff is greater
than zero. A reasonable system of prices should be such that arbitrage is
excluded.

2.2.2 The Law of One Price

The law of one price states that if two financial instruments have the same
payoffs then they have the same price. The absence of arbitrage implies
that the law of one price holds. Indeed, consider the case where the law of
one price does not hold. Then we have two assets with different prices at
time zero, say V

(a)
0 < V

(b)
0 , and the values of the assets are the same with

probability one at a later time: P0(V
(a)
1 = V

(b)
1 ) = 1. Then we can by the

cheaper asset at time zero and sell the more expensive asset at time zero to
obtain the amount V

(b)
0 − V

(a)
0 > 0. This amount can be put into a bank
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account. At time one the two assets have the same price, and thus we have
locked the profit of time zero. We have shown that there exists an arbitrage
opportunity. Thus we have shown that the absence of arbitrage implies that
the law of one price holds.

2.3 Pricing using The Law of One Price

The law of one price can be used to price linear assets by replication.3 Fur-
thermore, the law of one price can be used to price all assets in complete
markets. By a market we mean a collections of tradable assets together
with assumptions about the probability distributions of the asset values.
A complete market is such that any possible payoff can be obtained by a
portfolio of assets. That is, assume that the market has tradable assets
S1
t , . . . , S

N
t . Assume that an arbitrary payoff HT can be obtained, so that

Pt(ξ
1S1

T + · · ·+ ξNSN
T = HT ) = 1. The law of one price implies that price of

this payoff is π(HT ) = ξ1S1
t + · · ·+ ξNSN

t .
Futures are linear derivatives, and thus the law of one price can be used to

price futures. Futures can be priced by the law of one price because futures
can be defined as a portfolio of the underlying asset and a bond: the payoff
of a futures contract is a linear combination of the payoffs of the underlying
asset and a bond.

The payoff of an option is not linear function of the payoff of the underly-
ing an thus options cannot be priced as easily as futures. The Black-Scholes
model is a complete model for the markets, and thus the law of one price can
be used to price options in the Black-Scholes model.

The no-arbitrage principle can be used to give bounds to option prices
without assuming the Black-Scholes model, or any other restrictive market
model. The no-arbitrage principle can also be used to show that the prices
of two options should be the same, as in the case of the put-call parity.

3 Relative Pricing with Statistical Arbitrage

We have derived the price of the derivative in (1) using the replication of the
derivative with a stock and a bond. The exact replication is possible only
under special circumstances. It suffices to move from the binary model to a
ternary model to make exact replication impossible so that only approximate
replication is possible.

3We can use the arbitrage argument directly, but we have noted that the absence of
arbitrage implies the law of one price and thus we use below the pricing with the replication.
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3.1 Pricing in a One Period Ternary Model

Let us have two games related to the same tossing of a dice. The first game
is such that the player receives d euros when the dice shows 1 or 2, c euros
when the dice shows 3 or 4, and u euros when the dice shows 5 or 6, where
0 ≤ d < c < u. The participation to this game is an analogy to buying a
stock and we denote with S the random variable with P (S = d) = P (S =
c) = P (S = u) = 1/3.

The second game is such that the player receives zero euros when the dice
shows 1, 2, 3, or 4 and one euro when the dice shows 5 or 6. The participation
to this game is an analogy to buying a derivative and we denote with H the
random variable H = f(S), where f : {1, . . . , 6} → R is defined by f(x) = 0
when x ∈ {1, . . . , 4} and f(x) = 1 when x ∈ {5, 6}. Now P (H = 0) = 2/3
and P (H = 1) = 1/3. The third asset is a bond with value B = 1. The price
of the bond is 1 and the price of the stock is denoted with π(S). We want
to find the price π(H) of the derivative.

The derivative cannot be replicated with the bond and the stock: Con-
sider the portfolio with ξ1 bonds and ξ2 stocks. The portfolio is V =
ξ1B + ξ2S. We have P (V = H) = 1 when ξ1 and ξ2 satisfy

ξ1 + ξ2d = 0,

ξ1 + ξ2c = 0,

ξ1 + ξ2u = 1.

We can typically not find such ξ1 and ξ2 because, in general, two parameters
cannot satisfy three equations simultaneously. To obtain an approximate
replication we could choose ξ1 and ξ2 so that E(V − H)2 is minimized. We
have that

E(V −H)2

= P (S = d)(ξ1 + ξ2d)
2 + P (S = c)(ξ1 + ξ2c)

2 + P (S = u)(ξ1 + ξ2u− 1)2.

Since the probabilities are all equal to 1/3, we get the least squares solution
for ξ = (ξ1, ξ2)

′:
ξ = (X ′X )−1X ′Y ,

where

X =





1 d
1 c
1 u



, ξ =

[

ξ1
ξ2

]

, Y =





0
0
1



.

The solution is

ξ1 =
1

3
− 1

3
(d+ c+ u)ξ2, ξ2 =

u− (d+ c+ u)/3

d2 + c2 + u2 − (d+ c+ u)2/3
.
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We set the price of the derivative to be equal to the price of the approximately
replicating portfolio:

π(H) = π(V ) = ξ1 + ξ2π(S).

If π(S) = ES = (d+ c+ u)/3, then π(H) = EH = 1/3.

3.2 Statistical Arbitrage and the Law of Approximate

Price

Statistical arbitrage is a financial operation where a profit is obtained with
a high probability. The principle of excluding the possibilities of statistical
arbitrage is a pricing principle which can be used when the principle of exclud-
ing arbitrage does not apply. However, the concept of statistical arbitrage is
more vague than the concept of arbitrage. Let us compare the principle of
excluding arbitrage to the concept of excluding statistical arbitrage.

1. Excluding arbitrage. The value of a derivative is DT at time T . Let
us have an other asset whose value is AT at time T . Assume that the
values are equal with probability one: P (DT = AT ) = 1. Then it should
hold that the value of the derivative and the other asset are equal at
all previous times: Dt = At for all previous times t. Otherwise, there
would be an arbitrage opportunity: sell the more expensive instrument
and buy the cheaper instrument to obtain a risk free profit at time T .

2. Excluding statistical arbitrage. The value of a derivative is DT at time
T . Let us have an other asset whose value is AT at time T . If the ran-
dom variables DT and AT are “close”, then the prices Dt and At should
be close at all previous times t. The closeness of random variables can
be defined in many ways. For example, we can say that two random
variables DT and AT are close when E(DT − AT )

2 is small. A deriva-
tive can be priced with statistical arbitrage if we can construct an asset
which replicates the payoff of the derivative with high probability.

4 Futures on a Stock

We consider a futures contract on a stock. The futures contract is made at
time t and the contract specifies that the buyer of the contract has to buy
the stock at a later time T with price K. We assume that the stock does
not pay dividends during the time period from t to T . Let us denote with
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St and ST the prices of the stock at times t and T . The value of the futures
contract at time T is

FT = ST −K,

because the buyer of the futures contract gives away K and receives ST . We
want to determine the fair value Ft at time t of the futures contract. We
may replicate the futures contract buy buying the stock St and borrowing
the amount e−r(T−t)K, where r > 0 is the interest rate for the period from t
to T . At time t the value of this portfolio is

St − e−r(T−t)K.

One can see immediately that at time T the value of this portfolio is FT =
ST −K with probability one. Thus,

Ft = St − e−r(T−t)K,

by the law of one price, to exclude arbitrage.
However, the futures contract is such that nothing changes hands at time

t, and the fair forward price is called such value of K which makes the value
Ft of the futures contract zero. Choosing Ft = 0 gives

K = Kt = er(T−t)St. (2)

When an investor enters a futures contract in a futures exchange, this does
not imply any cash flows, but the exchange requires from the investor a
liquid collateral in order to secure a possible future payment. The future
prices which are quoted in a futures exchange are the forward prices Kt

(which are determined by the supply and demand). Numbers Kt are called
futures prices or forward prices.

5 Put-Call Parity

The price of a put can always be expressed in terms of the price of a call,
and conversely. We have the put-call parity:

Ct − Pt = St −Ke−r(T−t), (3)

where K is the common strike price of the call and put, and r is the yearly
interest rate for the period from t to T . It is clear that at the expiration we
have CT − PT = ST −K. The put-call parity extends this result for times t
before the expiration time T . We do not need to know fair values for Ct and
Pt in order to have a formula for their difference.
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5.1 Derivation of the Put-Call Parity

Consider the portfolio V
(1)
t obtained by buying the call and writing the put:

V
(1)
t = Ct − Pt.

At the expiration we have V
(1)
T = ST −K. This can be seen immediately:4

CT − PT = max{0, ST −K} −max{0, K − ST} = ST −K.

Consider second portfolio V
(2)
t obtained by buying the stock and borrow-

ing the amount Ke−r(T−t):

V
(2)
t = St −Ke−r(T−t).

At the expiration we have V
(2)
T = ST −K. Since with probability 1, V

(1)
T =

V
(2)
T , we have

V
(1)
t = V

(2)
t

for all times t before T , to exclude arbitrage. This is equivalent to (3).

5.2 Consequences of the Put-Call Parity

5.2.1 Bounds for the Option Price

We have that
max

{

St − e−r(T−t)K, 0
}

≤ Ct ≤ St. (4)

Indeed, Ct ≥ 0 is obvious, since the right to buy a stock involves no obliga-
tions. Also, Ct ≤ St is obvious, since the right to buy a stock must be less
valuable than than the stock itself. The put call parity and the fact that
Pt ≥ 0 gives

St −Ke−r(T−t) = Ct − Pt ≤ Ct.

5.2.2 American Options

The put-call parity was derived for European options. However, this parity
can be used to show that for a stock which does not pay dividends,

CA
t = CE

t , (5)

4If ST ≤ K, then the call option expires worthless (CT = 0), and the value of the put
option is PT = K − ST . Thus in this case CT − PT = ST −K. If ST ≥ K, then the value
of the call option is CT = ST −K and the put option is worthless (PT = 0). Thus also in
this case CT − PT = ST −K.
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where CA
t is the price of an American call option and CE

t is the price of an
European call option. We know that CA

t ≥ CE
t , because an American option

has more rights than the corresponding European option. The lower bound
in (4) implies

St −K ≤ St −Ke−r(T−t) ≤ CE
t ≤ CA

t ,

where St − K is the cash flow generated by the exercise of the call option.
Since CA

t ≥ St −K, an early exercise is always suboptimal and one should
sell the American call option and not exercise it. Since it is not optimal
to exercise the option, the possibility for the early exercise is not worth of
anything, and the American call option has the same value as the European
call option.

However, an American put option is in general worth more than the
corresponding European put option. For the American options we have

CA
t − PA

t < St −Ke−r(T−t).

The difference between the put and call options comes from the fact that the
value of a put option increases as the price of the stock decreases. When the
value of the stock decreases, then the absolute price changes become smaller.
We can reach the point where the stock has so small values that further
decreases in the stock price would not give a better rate of return to the put
option than the risk free rate. At that point it is better to exercise the option
and invest in the risk free rate. With calls the situation reverses because as
the stock price increases, absolute price changes increase.

6 Black-Scholes Price

6.1 Call and Put Prices

The Black-Scholes price of the call option at time t, with strike price K, and
with the maturity date T , is equal to

Ct(St, K, T ) = StΦ(z+)−Ke−r(T−t)Φ(z−), (6)

where St is the stock price when the option is written, r > 0 is the annualized
risk free rate,

z± =
loge(St/K) + (r ± σ2/2)(T − t)

σ
√
T − t

,

and Φ is the distribution function of the standard Gaussian. The time to
expiration T − t is expressed as fractions of year. The put price is

Pt(St, K, T ) = −StΦ(−z+) +Ke−r(T−t)Φ(−z−). (7)

10



Note that it can be convenient to write

z± =
loge

(

Ste
r(T−t)/K

)

± (T − t) σ2/2

σ
√
T − t

.

The Black-Scholes prices are derived under the assumption of a log-normal
distribution of the stock price: It is assumed that at time t < T

ST ∼ St exp
{

µ(T − t) + σ
√
T − t Zt

}

,

where Zt ∼ N(0, 1), µ ∈ R is the drift, and σ > 0 is the volatility. The
volatility σ is the only unknown parameter that need to be estimated, since
µ does not appear in the price formula.

We can study the qualitative behaviour of the Black-Scholes prices as a
function of five parameters σ, T − t, r, St, and K. The price of calls and
puts increases as σ increases. We have

lim
σ→∞

Ct(St, K, T ) = St

and
lim
σ→0

Ct(St, K, T ) =
(

St − e−r(T−t)K
)

+
,

which are the bounds derived form the put-call parity in (4). The prices of
calls and puts increase as the time to maturity T − t increases. The price
of a call increases as St increases and the price of a call decreases as K
increases, but for puts the relations reverse. The price of a call increases as
the interest rate r increases but the price of a put decreases as the interest
rate r increases.

6.2 Calculation of the Black-Scholes Prices

For the application of the Black-Scholes formula the time T − t is taken as
the time in fractions of year. For example, when the time to expiration is
20 days, then T − t = 20/365. Also, the risk free rate r is expressed as an
annual rate.

The only unknown parameter σ has to be estimated. Let St0 , . . . , Stn be
an equally spaced sample of stock prices and let us denote ∆t = ti − ti−1,
for i = 1, . . . , n. We assume that Yi = log

(

Sti/Sti−1

)

, i = 1, . . . , n, are i.i.d.
N(m, s2). We can estimate s2 with the sample variance

ŝ2 =
1

n

n
∑

i=1

(

Yi − Ȳ
)2

,
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where Ȳ = n−1
∑n

i=1 Yi. Then an estimator of σ = s(∆t)−1/2 is

σ̂ = ŝ (∆t)−1/2. (8)

For example, if we sample stock prices daily and use the convention that
time is expressed as fractions of year, then ∆t = 1/250 and σ̂ = ŝ

√
250.5

If we sample stock prices monthly, then ∆t = 1/12 and σ̂ = ŝ
√
12. The

normalized sample standard deviation in (8) is called the annualized sample
standard deviation.

6.3 Call and Put Prices Can Be Written as Expecta-

tions

We can write the prices of a call and a put as the expectations

Ct(St, K, T ) = e−r(T−t)E [(ST −K)+] (9)

and
Pt(St, K, T ) = e−r(T−t)E [(K − ST )+],

where the expectation is taken with respect the distribution of ST , defined
by,

ST = St exp
{

µ(T − t) + σ
√
T − t Z

}

, (10)

where Z ∼ N(0, 1) and

µ = r − 1

2
σ2.

Indeed, let us denote the density of the standard Gaussian distribution
by φ(z) = (2π)−1/2e−z2/2, z ∈ R. Then,

Et(ST −K)+ =

∫ ∞

w

(

St exp{zσ
√
T − t + µ(T − t)} −K

)

φ(z) dz,

where

w =
loge(K/St)− µ(T − t)

σ
√
T − t

.

We have

exp
{

zσ
√
T − t

}

φ(z) = exp

{

1

2
σ2(T − t)

}

φ
(

z − σ
√
T − t

)

.

5The actual number of trading days in a year is between 250 and 252. There are 365
days in a year, but if we ignore the days, when there are no trading, then ∆t = 1/250.
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Thus,

Et(ST −K)+ = Ste
µ(T−t)

∫ ∞

w

ezσ
√
T−t φ(z) dz −K

∫ ∞

w

φ(z) dz

= Ste
µ(T−t)+σ2(T−t)/2

∫ ∞

w−σ
√
T−t

φ(z) dz −K

∫ ∞

w

φ(z) dz

= Ste
µ(T−t)+σ2(T−t)/2Φ(σ

√
T − t− w)−KΦ(−w). (11)

Similarly,

Et(K − ST )+ =

∫ w

−∞

(

K − St exp{zσ
√
T − t + µ(T − t)}

)

φ(z) dz

= KΦ(w)− Ste
µ(T−t)+σ2(T−t)/2Φ(w − σ

√
T − t). (12)

This leads to the call price

Ct(St, K, T ) = e−r(T−t)
[

Ste
r(T−t)Φ(z+)−KΦ(z−)

]

,

and to the put price

Pt(St, K, T ) = e−r(T−t)
[

−Ste
r(T−t)Φ(−z+) +KΦ(−z−)

]

,

where

z± =
loge

(

Ste
r(T−t)/K

)

± (T − t) σ2/2

σ
√
T − t

,

which are equal to the prices (6) and (7).

6.4 Derivation of the Price Using the Put-Call parity

We can derive the Black Scholes price for the calls and puts using the put-call
parity given in Section 5. We assume that the distribution of the stock price
ST is defined by (10). Let us denote by Ct the value of the call option at
time t. We assume that the value of the call option is equal to

Ct = e−r(T−t)EtCT = e−r(T−t)Et(ST −K)+

and the value of the put option is equal to

Pt = e−r(T−t)EtPT = e−r(T−t)Et(K − ST )+.

Thus, using (11) and (12),

Ct − Pt = Ste
(µ+σ2/2−r)(T−t) − e−r(T−t)K,

because Φ(x)+Φ(−x) = 1 for all x ∈ R. The put-call parity (3) implies that
we have to take

µ = r − 1

2
σ2. (13)

Inserting (13) to (11) and (12) leads to (6) and (7).
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