Nonparametric Finance

Jussi Klemelä

July 5, 2017
Contents

1 Introduction .. 1
 1.1 Statistical Finance .. 2
 1.2 Risk Management .. 4
 1.3 Portfolio Management ... 5
 1.4 Pricing of Securities ... 7

I Statistical Finance .. 11

2 Financial Instruments .. 13
 2.1 Stocks ... 13
 2.1.1 Stock Indexes ... 14
 2.1.2 Stock Prices and Returns 16
 2.2 Fixed Income Instruments .. 19
 2.2.1 Bonds .. 20
 2.2.2 Interest Rates .. 21
 2.2.3 Bond Prices and Returns 23
 2.3 Derivatives .. 24
 2.3.1 Forwards and Futures 24
 2.3.2 Options .. 25
 2.4 Data Sets .. 29
 2.4.1 Daily S&P 500 Data .. 30
 2.4.2 Daily S&P 500 and Nasdaq-100 Data 30
 2.4.3 Monthly S&P 500, Bond, and Bill Data 30
 2.4.4 Daily US Treasury 10 Year Bond Data 31
 2.4.5 Daily S&P 500 Components Data 33

3 Univariate Data Analysis .. 35
 3.1 Univariate Statistics ... 36
 3.1.1 The Center of a Distribution 36
 3.1.2 The Variance and Moments 40
CONTENTS

3.1.3 The Quantiles and the Expected Shortfalls 43
3.2 Univariate Graphical Tools 46
 3.2.1 Empirical Distribution Function Based Tools 46
 3.2.2 Density Estimation Based Tools 57
3.3 Univariate Parametric Models 59
 3.3.1 The Normal and Log-normal Models 60
 3.3.2 The Student Distributions 64
3.4 Tail Modeling 66
 3.4.1 Modeling and Estimating Excess Distributions 68
 3.4.2 Parametric Families for Excess Distributions 71
 3.4.3 Fitting the Models to Return Data 82
3.5 Asymptotic Distributions 91
 3.5.1 The Central Limit Theorems 91
 3.5.2 The Limit Theorems for Maxima 97
3.6 Univariate Stylized Facts 101

4 Multivariate Data Analysis 105
 4.1 Measures of Dependence 106
 4.1.1 Correlation Coefficients 107
 4.1.2 Coefficients of Tail Dependence 111
 4.2 Multivariate Graphical Tools 114
 4.2.1 Scatter Plots 114
 4.2.2 Correlation Matrix: Multidimensional Scaling 115
 4.3 Multivariate Parametric Models 118
 4.3.1 Multivariate Gaussian Distributions 118
 4.3.2 Multivariate Student Distributions 119
 4.3.3 Normal Variance Mixture Distributions 120
 4.3.4 Elliptical Distributions 122
 4.4 Copulas 123
 4.4.1 Standard Copulas 124
 4.4.2 Nonstandard Copulas 125
 4.4.3 Sampling from a Copula 126
 4.4.4 Examples of Copulas 128

5 Time Series Analysis 135
 5.1 Stationarity and Autocorrelation 136
 5.1.1 Strict Stationarity 136
 5.1.2 Covariance Stationarity and Autocorrelation 139
 5.2 Model Free Estimation 142
 5.2.1 Descriptive Statistics for Time Series 143
 5.2.2 Markov Models 143
CONTENTS

- 5.2.3 Time Varying Parameter ... 144
- 5.3 Univariate Time Series Models .. 149
 - 5.3.1 Prediction and Conditional Expectation 150
 - 5.3.2 ARMA Processes ... 151
 - 5.3.3 Conditional Heteroskedasticity Models 159
 - 5.3.4 Continuous Time Processes 171
- 5.4 Multivariate Time Series Models 174
 - 5.4.1 MGARCH Models ... 175
 - 5.4.2 Covariance in MGARCH Models 176
 - 5.5 Time Series Stylized Facts ... 177

6 Prediction 181

- 6.1 Methods of Prediction ... 182
 - 6.1.1 Moving Average Predictors 182
 - 6.1.2 State Space Predictors .. 184
- 6.2 Forecast Evaluation .. 188
 - 6.2.1 The Sum of Squared Prediction Errors 189
 - 6.2.2 Testing the Prediction Accuracy 191
- 6.3 Predictive Variables .. 194
 - 6.3.1 Risk Indicators ... 194
 - 6.3.2 Interest Rate Variables 196
 - 6.3.3 Stock Market Indicators 197
 - 6.3.4 Sentiment Indicators 199
 - 6.3.5 Technical Indicators 200
- 6.4 Asset Return Prediction ... 203
 - 6.4.1 Prediction of S&P 500 Returns 204
 - 6.4.2 Prediction of 10 Year Bond Returns 207

II Risk Management 215

7 Volatility Prediction 217

- 7.1 Applications of Volatility Prediction 219
 - 7.1.1 Variance and Volatility Trading 219
 - 7.1.2 Covariance Trading .. 220
 - 7.1.3 Quantile Estimation .. 221
 - 7.1.4 Portfolio Selection .. 221
 - 7.1.5 Option Pricing ... 221
- 7.2 Performance Measures for Volatility Predictors 222
- 7.3 Conditional Heteroskedasticity Models 223
 - 7.3.1 GARCH Predictor ... 223
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.2</td>
<td>ARCH Predictor</td>
<td>225</td>
</tr>
<tr>
<td>7.4</td>
<td>Moving Average Methods</td>
<td>228</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Sequential Sample Variance</td>
<td>228</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Exponentially Weighted Moving Average</td>
<td>230</td>
</tr>
<tr>
<td>7.5</td>
<td>State Space Predictors</td>
<td>234</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Linear Regression Predictor</td>
<td>236</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Kernel Regression Predictor</td>
<td>238</td>
</tr>
<tr>
<td>8</td>
<td>Quantiles and Value-at-Risk</td>
<td>243</td>
</tr>
<tr>
<td>8.1</td>
<td>Definitions of Quantiles</td>
<td>245</td>
</tr>
<tr>
<td>8.2</td>
<td>Applications of Quantiles</td>
<td>247</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Reserve Capital</td>
<td>247</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Margin Requirements</td>
<td>250</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Quantiles as a Risk Measure</td>
<td>251</td>
</tr>
<tr>
<td>8.3</td>
<td>Performance Measures for Quantile Estimators</td>
<td>253</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Measuring the Probability of Exceedances</td>
<td>253</td>
</tr>
<tr>
<td>8.3.2</td>
<td>A Loss Function for Quantile Estimation</td>
<td>257</td>
</tr>
<tr>
<td>8.4</td>
<td>Nonparametric Estimators of Quantiles</td>
<td>260</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Empirical Quantiles</td>
<td>260</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Conditional Empirical Quantiles</td>
<td>264</td>
</tr>
<tr>
<td>8.5</td>
<td>Volatility Based Quantile Estimation</td>
<td>266</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Location-Scale Model</td>
<td>267</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Conditional Location-Scale Model</td>
<td>271</td>
</tr>
<tr>
<td>8.6</td>
<td>Excess Distributions in Quantile Estimation</td>
<td>286</td>
</tr>
<tr>
<td>8.6.1</td>
<td>The Excess Distributions</td>
<td>288</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Unconditional Quantile Estimation</td>
<td>290</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Conditional Quantile Estimators</td>
<td>300</td>
</tr>
<tr>
<td>8.7</td>
<td>Extreme Value Theory in Quantile Estimation</td>
<td>318</td>
</tr>
<tr>
<td>8.7.1</td>
<td>The Block Maxima Method</td>
<td>320</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Threshold Exceedances</td>
<td>321</td>
</tr>
<tr>
<td>8.8</td>
<td>Expected Shortfall</td>
<td>324</td>
</tr>
<tr>
<td>8.8.1</td>
<td>Performance of Estimators of the Expected Shortfall</td>
<td>325</td>
</tr>
<tr>
<td>8.8.2</td>
<td>Estimation of the Expected Shortfall</td>
<td>325</td>
</tr>
</tbody>
</table>

III Portfolio Management

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Some Basic Concepts of Portfolio Theory</td>
<td>333</td>
</tr>
<tr>
<td>9.1</td>
<td>Portfolios and Their Returns</td>
<td>334</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Trading Strategies</td>
<td>335</td>
</tr>
<tr>
<td>9.1.2</td>
<td>The Wealth and Return in the One Period Model</td>
<td>336</td>
</tr>
</tbody>
</table>
CONTENTS

9.1.3 The Wealth Process in the Multiperiod Model 339
9.1.4 Examples of Portfolios 341
9.2 Comparison of Return and Wealth Distributions 347
9.2.1 Mean-Variance Preferences 349
9.2.2 Expected Utility . 352
9.2.3 Stochastic Dominance 361
9.3 Multiperiod Portfolio Selection 363
9.3.1 One Period Optimization 366
9.3.2 The Multiperiod Optimization 367

10 Performance Measurement 375
10.1 The Sharpe Ratio . 376
10.1.1 Definition of the Sharpe Ratio 377
10.1.2 Confidence Intervals for the Sharpe Ratio 378
10.1.3 Testing the Sharpe Ratio 381
10.1.4 Other Measures of Risk Adjusted Return 384
10.2 Certainty Equivalent . 386
10.3 Drawdown . 386
10.4 Alpha and Conditional Alpha 387
10.4.1 Alpha . 388
10.4.2 Conditional Alpha . 395
10.5 Graphical Tools of Performance Measurement 396
10.5.1 Using Wealth in Evaluation 396
10.5.2 Using the Sharpe Ratio in Evaluation 400
10.5.3 Using the Certainty Equivalent in Evaluation 405

11 Markowitz Portfolios 407
11.1 Variance Penalized Expected Return 409
11.1.1 Variance Penalization with the Risk Free Rate 409
11.1.2 Variance Penalization without the Risk Free Rate 411
11.2 Minimizing Variance under a Sufficient Expected Return . . . 413
11.2.1 Minimizing Variance with the Risk Free Rate 413
11.2.2 Minimizing Variance without the Risk Free Rate 415
11.3 Markowitz Bullets . 416
11.4 Further Topics in Markowitz Portfolio Selection 422
11.4.1 Estimation . 422
11.4.2 Penalizing Techniques 423
11.4.3 Principal Components Analysis 424
11.5 Examples of Markowitz Portfolio Selection 424
CONTENTS

12 Dynamic Portfolio Selection 427
 12.1 Prediction in Dynamic Portfolio Selection 429
 12.1.1 Expected Returns in Dynamic Portfolio Selection . . . 429
 12.1.2 Markowitz Criterion in Dynamic Portfolio Selection . . 433
 12.1.3 Expected Utility in Dynamic Portfolio Selection . . . 434
 12.2 Backtesting Trading Strategies 436
 12.3 One Risky Asset . 437
 12.3.1 Using Expected Returns with One Risky Asset . . . 437
 12.3.2 Markowitz Portfolios with One Risky Asset 445
 12.4 Two Risky Assets . 450
 12.4.1 Using Expected Returns with Two Risky Assets . . . 450
 12.4.2 Markowitz Portfolios with Two Risky Assets 453

13 Option Strategies 467
 13.1 Option Strategies . 468
 13.1.1 Calls, Puts, and Vertical Spreads 468
 13.1.2 Strangles, Straddles, Butterflies, and Condors . . . 471
 13.1.3 Calendar Spreads . 474
 13.1.4 Combining Options With Stocks and Bonds 475
 13.2 Profitability of Option Strategies 478
 13.2.1 Return Functions of Option Strategies 480
 13.2.2 Return Distributions of Option Strategies 488
 13.2.3 Performance Measurement of Option Strategies . . . 500

IV Pricing of Securities 505

14 Principles of Asset Pricing 507
 14.1 Introduction to Asset Pricing 509
 14.1.1 Absolute Pricing . 509
 14.1.2 Relative Pricing Using Arbitrage 511
 14.1.3 Relative Pricing Using Statistical Arbitrage 515
 14.2 Fundamental Theorems of Asset Pricing 517
 14.2.1 Discrete Time Markets 518
 14.2.2 Wealth and Value Processes 520
 14.2.3 Arbitrage and Martingale Measures 524
 14.2.4 European Contingent Claims 537
 14.2.5 Completeness . 541
 14.2.6 American Contingent Claims 544
 14.3 Evaluation of Pricing and Hedging Methods 546
 14.3.1 The Wealth of the Seller 546
CONTENTS

14.3.2 The Wealth of the Buyer .. 549

15 Pricing by Arbitrage .. 551
 15.1 Futures and the Put-Call Parity 552
 15.1.1 Futures ... 552
 15.1.2 The Put-Call Parity .. 557
 15.1.3 American Call Options .. 558
 15.2 Pricing in Binary Models .. 560
 15.2.1 The One Period Binary Model 560
 15.2.2 The Multiperiod Binary Model 563
 15.2.3 Asymptotics of the Multiperiod Binary Model 569
 15.2.4 American Put Options .. 579
 15.3 Black-Scholes Pricing .. 581
 15.3.1 Call and Put Prices ... 581
 15.3.2 Implied Volatilities .. 591
 15.3.3 Derivations of the Black-Scholes Prices 595
 15.3.4 Examples of Pricing Using the Black-Scholes Model 599
 15.4 Black-Scholes Hedging .. 603
 15.4.1 Hedging Errors: Non-sequential Volatility Estimation ... 604
 15.4.2 Hedging Frequency ... 606
 15.4.3 Hedging and Strike Price 609
 15.4.4 Hedging and Expected Return 610
 15.4.5 Hedging and Volatility 613
 15.5 Black-Scholes Hedging and Volatility Estimation 613
 15.5.1 Hedging Errors: Sequential Volatility Estimation 614
 15.5.2 Distribution of Hedging Errors 615

16 Pricing in Incomplete Models 619
 16.1 Quadratic Hedging and Pricing 621
 16.2 Utility Maximization ... 622
 16.2.1 The Exponential Utility 622
 16.2.2 Other Utility Functions 623
 16.2.3 Relative Entropy ... 625
 16.2.4 Examples of Esscher Prices 626
 16.2.5 Marginal Rate of Substitution 628
 16.3 Absolutely Continuous Changes of Measures 629
 16.3.1 Conditionally Gaussian Returns 629
 16.3.2 Conditionally Gaussian Logarithmic Returns 631
 16.4 GARCH Market Models .. 633
 16.4.1 Heston-Nandi Method ... 634
 16.4.2 The Monte Carlo Method 638
18.4.2 Short Rate Models ... 742
Preface

We study applications of nonparametric function estimation into risk management, portfolio management, and option pricing.

The methods of nonparametric function estimation has not been commonly used in risk management. In fact, the scarcity of data in the tails of a distribution would seem to make it difficult to utilize the methods of nonparametric function estimation. However, it has turned out that some semiparametric methods which combine purely parametric and purely nonparametric methods are able to improve purely parametric methods.

Academic research has paid less attention to portfolio selection, as compared to the attention which has been paid to risk management and option pricing. We study applications of nonparametric prediction methods to portfolio selection. The use of nonparametric function estimation to reach practical decisions is an important part of machine learning.

Option pricing might be the most widely studied part of quantitative finance in academic research. In fact, the birth of modern quantitative finance is often dated to the 1973 publication of the Black-Scholes option pricing formula. Option pricing has been dominated by parametric methods, and it is especially interesting to provide some insights of nonparametric function estimation into option pricing.

The book is suitable for graduate students, researchers and practitioners in quantitative finance. The book is suitable for those mathematicians and statisticians who would like to know about applications of mathematics and statistics into finance. Also, the book is suitable for practitioners of finance who would like to study some underlying mathematics of finance, and would like to learn new methods. Some parts of the book require fluency in mathematics.

Klemela (2014) is a book which contains risk management (volatility prediction and quantile estimation) and it describes methods of nonparametric regression which can be applied in portfolio selection. In this book we cover those topics, and also include a part about option pricing.

The chapters are rather independent studies of well defined topics. It is possible to read the individual chapters without a detailed study of the previous material.

The research in book is reproducible, because we provide R-code of the computations. This makes it easier for students to utilize the book, and it makes it easier for instructors to adapt the material into their teaching.

The web page of the book is available in http://jussiklemela.com/statfina/.

Jussi Klemela
Helsinki, Finland
June 2017
Chapter 1

Introduction

Nonparametric function estimation has many useful applications in quantitative finance. We study four areas of quantitative finance: statistical finance, risk management, portfolio management, and pricing of securities.

A main theme of the book is to study quantitative finance starting only with few modeling assumptions. For example, we study the performance of nonparametric prediction in portfolio selection, and we study the performance of nonparametric quadratic hedging in option pricing, without constructing detailed models for the markets. We use some classical parametric methods, like Black-Scholes pricing, as benchmarks to provide comparisons with nonparametric methods.

A second theme of the book is to put emphasis on the study of economic significance instead of statistical significance. For example, studying economic significance in portfolio selection could mean that we study whether prediction methods are able to produce portfolios with large Sharpe ratios. In contrast, studying statistical significance in portfolio selection could mean that we study whether asset returns are predictable in the sense of the mean squared prediction error. Studying economic significance in option pricing could mean that we study whether hedging methods are able to well approximate the payoff of the option. In contrast, studying statistical significance in option pricing could mean that we study the goodness-of-fit of our underlying model for asset prices. Studying statistical significance can be important for understanding the underlying reasons for economic significance. However, the study of economic significance is of primary importance, and the study

1 The quantitative finance section of preprint archive “arxiv.org” contains four additional sections: computational finance, general finance, mathematical finance, and trading and market microstructure. We cover some topics of computational finance that are useful in derivative pricing, like lattice methods and Monte Carlo methods. Also, we cover some topics of mathematical finance, like the fundamental theorems of asset pricing.
of statistical significance is of secondary importance.

A third theme of the book is the connections between the various parts of quantitative finance.

1. There are connections between risk management and portfolio selection: In portfolio selection it is important to consider not only the expected returns but also the riskiness of the assets. In fact, the distinction between risk management and portfolio selection is not clear cut.

2. There are connections between risk management and option pricing: The prices of options are largely influenced by the riskiness of the underlying assets.

3. There are connections between portfolio management and option pricing: Options are important assets to be included in a portfolio. Also, multiperiod portfolio selection and option hedging can both be casted in the same mathematical framework.

Volatility prediction is useful in risk management, option pricing, and portfolio selection. Thus, volatility prediction is a constant topic throughout the book.

1.1 Statistical Finance

Statistical finance makes statistical analysis of financial and economic data.

Chapter 2 contains a description of the basic financial instruments, and it contains a description of the data sets which are analyzed in the book.

Chapter 3 studies univariate data analysis. We study univariate financial time series, but ignore the time series properties of data. A decomposition of a univariate distribution into the central part and into the tail parts is an important theme of the chapter.

1. We use different estimators for the central part and for the tails. Nonparametric density estimation is efficient at the center of a univariate distribution, but in the tails of the distribution the scarcity of data makes nonparametric estimation difficult. When we combine a nonparametric estimator for the central part and a parametric estimator for the tails then we obtain a semiparametric estimator for the distribution.
2. We use different visualization methods for the central part and for the tails. We apply two basic visualization tools: (1) kernel density estimates, and (2) tail plots. Kernel density estimates can be used to visualize and to estimate the central part of the distribution. Tail plots are an empirical distribution based tool, and they can be used to visualize the tails of the distribution.

Chapter 4 studies multivariate data analysis. Multivariate data analysis considers simultaneously several time series, but the time series properties are ignored, and thus the analysis can be called cross-sectional. A basic concept is the copula, which makes it possible to compose a multivariate distribution into the part which describes the dependence and into the parts which describe the marginal distributions. We can estimate the marginal distributions using nonparametric methods, but to estimate dependence for a high-dimensional distribution it can be useful to apply parametric models. Combining nonparametric estimators of marginals and a parametric estimator of the copula leads to a semiparametric estimator of the distribution. Note that there is an analogy between the decomposition of a multivariate distribution into the copula and the marginals, and between the decomposition of a univariate distribution into the tails and the central area.

Chapter 5 studies time series analysis. Time series analysis adds the elements of dependence and time variation into the univariate and multivariate data analysis. Completely nonparametric time series modeling tends to become quite multidimensional, because dependence over k consecutive time points leads to the estimation of a k-dimensional distribution. However, a rather convenient method for time series analysis is obtained by taking as a starting point a univariate or a multivariate parametric model, and estimating the parameter using time localized smoothing. We can apply time localized least squares or time localized maximum likelihood, for example.

Chapter 6 studies prediction. Prediction is a central topic in time series analysis. The previous observations are used to predict the future observations. A distinction is made between moving average type of predictors and state space type of predictors. Both type of predictors can arise from parametric time series modeling: moving average and GARCH(1, 1) models lead to moving average predictors, and autoregressive models lead to state space predictors. It is easy to construct nonparametric moving average predictors, and nonparametric regression analysis leads to nonparametric state space predictors.
1.2 Risk Management

Risk management studies measurement and management of financial risks. We concentrate on the market risk, which means the risk of unfavorable moves of asset prices.\footnote{Other relevant types of risk are credit risk, liquidity risk, and operational risk. Credit risk means the risk of the default of a debtor and the risks resulting from downgrading the rating of a debtor. Liquidity risk means the risk from additional cost of liquidating a position when buyers are rare. Operational risk means the risk caused by natural disasters, failures of the physical plant and equipment of a firm, failures in electronic trading, clearing or wire transfers, trading and legal liability losses, internal and external theft and fraud, inappropriate contractual negotiations, criminal mismanagement, lawsuits, bad advice, and safety issues.}

Chapter 7 studies volatility prediction. Prediction of volatility means in our terminology that the square of the return of a financial asset is predicted. The volatility prediction is extremely useful in almost every part of quantitative finance: we can apply volatility prediction in quantile estimation, and volatility prediction is an essential tool in option pricing and in portfolio selection. In addition, volatility prediction is needed when trading with variance products. We concentrate on three methods.

1. GARCH models are a classical and successful method to produce volatility predictions.

2. Exponentially weighted moving averages of squared returns lead to volatility predictions which are as good as GARCH(1, 1) predictions.

3. Nonparametric state space smoothing leads to improvements of GARCH(1, 1) predictions. We apply kernel regression with two explanatory variables: a moving average of squared returns and a moving average of returns. The response variable is a future squared return. A moving average of squared returns is in itself a good volatility predictor, but including a kernel regression on top of moving averages improves the predictions. In particular, we can take the leverage effect into account. The leverage effect means that when past returns have been low, then the future volatility tends to be higher, as compared to the future volatility when the past returns have been high.

Chapter 8 studies estimation of quantiles. Term “value-at-risk” is used to denote upper quantiles of a loss distribution of a financial asset. Value-at-risk at level $0.5 < p < 1$ has a direct interpretation in risk management: it is such value that the probability of losing more has a smaller probability than $1 - p$. We concentrate on three main classes of quantile estimators.
1.3 PORTFOLIO MANAGEMENT

1. The empirical quantile estimator is a quantile of the empirical distribution. The empirical quantile estimator has many variants, since it can be used in conditional quantile estimation and it can be modified by kernel smoothing. Also, empirical quantiles can be combined with volatility based and excess distribution based methods, since empirical quantiles can be used to estimate the quantiles of the residuals.

2. Volatility based quantile estimators apply a location-scale model. A volatility estimator leads directly to a quantile estimator, since estimation of the location is less important. The performance of volatility based quantile estimators depends on the choice of the base distribution, whose location and scale is estimated. However, in a time series setting the use of the empirical quantiles of the residuals provides a method which bypasses the problem of the choice of the base distribution.

3. Excess distribution based quantile estimators model the tail parametrically. These estimators ignore the central part of the distribution and model only the tail part parametrically. The tail part of the distribution is called the excess distribution. Extreme value theory can be used to justify the choice of the generalized Pareto distribution as the model for the excess distribution. Empirical work has confirmed that the generalized Pareto distribution provides a good fit in many cases. In a time series setting the estimation can be improved if the parameters of the excess distribution are taken to be time changing. Also, in a time series setting we can make the estimation more robust to the choice of the parametric model by applying the empirical quantiles of the residuals. In this case the definition of a residual is more involved than in the case of volatility based quantile estimators.

1.3 Portfolio Management

Portfolio management studies optimal security selection and capital allocation. In addition, portfolio management studies performance measurement. Chapter 9 discusses some basic concepts of portfolio theory.

1. A major issue is to introduce concepts for the comparison of wealth distributions and return distributions. The comparison can be made by the Markowitz mean-variance criterion or by the expected utility. We need to define what it means that a return distribution is better than another return distribution. This is needed both in portfolio selection and in performance measurement.
2. A second major issue is the distinction between the one period portfolio selection and multiperiod portfolio selection. We concentrate on the one period portfolio selection, but it is instructive to discuss the differences between the approaches.

Chapter 10 studies performance measurement.

1. The basic performance measures which we discuss are the Sharpe ratio, certainty equivalent, and the alpha of an asset.

2. Graphical tools are extremely helpful in performance measurement. The performance measures are sensitive to the time period over which the performance is measured. The graphical tools address the issue of the sensitivity of the time period to the performance measures. The graphical tools help to detect periods of good performance and the periods of bad performance, and thus they give clues for searching explanations for good and bad performance.

Chapter 11 studies Markowitz portfolio theory. Markowitz portfolios are such portfolios which minimize the variance of the portfolio return, under a minimal requirement for the expected return of the portfolio. Markowitz portfolios can be utilized in dynamic portfolio selection by predicting the future returns, future squared returns, and future products of returns of two assets, as will be done in Chapter 12.

Chapter 12 studies dynamic portfolio selection. Dynamic portfolio selection means in our terminology such trading where the weights of the portfolio are rebalanced at the beginning of each period using the available information. Dynamic portfolio selection utilizes the fact that the expected returns, the expected squared returns (variances), and the expected products of returns (covariances) change in time. The classical insight of efficient markets has to be modified to take into account the predictability of future returns and squared returns.

1. First we discuss how prediction can be used in portfolio selection. Time series regression can be applied in portfolio selection both when we use the maximization of the expected utility and when we use mean-variance preferences. In the case of the maximization of the expected utility we predict the future utility transformed returns with time series regression. In the case of mean-variance preferences we predict the future returns, squared returns, and products of returns.

2. The Markowitz criterion can be seen as decomposing the expected utility into the first two moments. The decomposition has the advantage
that different methods can be used to predict the returns, squared returns and products of returns. The main issue is to study the different types of predictability of the mean and the variance. In fact, most of the predictability comes from the variance part, whereas the expectation part has a much weaker predictability.

(a) We need to use different prediction horizons for the prediction of the returns and for the prediction of the squared returns. For the prediction of the returns we need to use a prediction horizon of one year or more. For the prediction of squared returns we can use a prediction horizon of one month or less.

(b) We need to use different prediction methods for the prediction of the returns and for the prediction of the squared returns. For the prediction of the returns it is useful to apply such explanatory variables as dividend yield and term spread. For the prediction of the squared returns we can apply GARCH predictors or exponentially weighted moving averages.

1.4 Pricing of Securities

Pricing of securities considers valuation and hedging of financial securities and their derivatives.

Chapter 14 studies principles of asset pricing. We start the chapter by a heuristic introduction to pricing of securities, and discuss such concepts as absolute pricing, relative pricing using arbitrage, and relative pricing using “statistical arbitrage”.

1. The first main topic is to state and to prove the first fundamental theorem of asset pricing in discrete time models, and to state the second fundamental theorem of asset pricing. These theorems provide the foundations on which we build the development of statistical methods of asset pricing. We give a constructive proof of the first fundamental theorem of asset pricing, instead of using tools of abstract functional analysis. The constructive proof of the first fundamental theorem of asset pricing turns out to be useful, because the method can be applied in practise to price options in incomplete models. The construction uses

3 Term “statistical arbitrage” refers often to pairs trading and to the application of mean reversion. We use term “statistical arbitrage” more generally, to refer to cases where two payoffs are close to each other with high probability. Thus, also term “probabilistic arbitrage” could be used.
the Esscher martingale measure, and it is a special case of using utility functions to price derivatives.

2. The second main topic is to discuss evaluation of pricing and hedging methods. The basic evaluation method will be to measure the hedging error. The hedging error is the difference between the payoff of the derivative and the terminal value of the hedging portfolio. By measuring the hedging error we simultaneously measure the modeling error and the estimation error. Minimizing the hedging error has economic significance, whereas modeling error and estimation error are underlying statistical concepts. Thus, emphasizing the hedging error is an example of emphasizing economic significance instead of statistical significance.

Chapter 15 studies pricing by arbitrage. The principle of arbitrage-free pricing combines two different topics: pricing of futures and pricing of options in complete models, like binary models and the Black-Scholes model.

1. A main topic is pricing in multiperiod binary models. First: these models introduce the idea of backward induction, which is an important numerical tool to value options in the Black-Scholes model, and which is an important tool in quadratic hedging. Second: these models lead asymptotically to the Black-Scholes prices.

2. A second main topic is to study the properties of Black-Scholes hedging. We illustrate how hedging frequency, strike price, expected return, and volatility influence the hedging error. These illustrations give insight into hedging methods in general, and not only into Black-Scholes hedging.

3. A third main topic is to study how Black-Scholes pricing and hedging performs with various volatility predictors. Black-Scholes pricing and hedging provides a benchmark, against which we can measure the performance of other pricing methods. Black-Scholes pricing and hedging assumes that the stock prices have a log-normal distribution with a constant volatility. However, when we combine Black-Scholes pricing and hedging with a time changing GARCH(1, 1) volatility, then we obtain a method which is hard to beat.

Chapter 16 gives an overview of several pricing methods in incomplete models. Binary models and the Black-Scholes model are complete models, but we are interested in option pricing when the model makes only few restrictions on the underlying distribution of the stock prices. Chapter 17
1.4. PRICING OF SECURITIES

is devoted to quadratic hedging, and in Chapter 16 we discuss pricing by utility maximization, pricing by absolutely continuous changes of measures, pricing in GARCH models, pricing by a nonparametric method, pricing by estimation of the risk neutral density, and pricing by quantile hedging.

1. A main topic is to introduce two general approaches for pricing derivatives in incomplete models: the method of utility functions and the method of an absolutely continuous change of measure (Girsanov’s theorem). For some Gaussian processes and for some utility functions these methods coincide. The method of utility functions can be applied to construct a nonparametric method of pricing options, whereas Girsanov’s theorem can be applied in the case of some processes with Gaussian innovations, like some GARCH processes.

2. A second main topic is to discuss pricing in GARCH models. GARCH(1, 1) model gives a reasonable fit to the distribution of stock prices. Girsanov’s theorem can be used to find a natural pricing function when it is assumed that the stock returns follow a GARCH(1, 1) process. Heston-Nandi modification of the standard GARCH(1, 1) model leads to a computationally attractive pricing method. Heston-Nandi model has been rather popular, and it can be considered as a discrete time version of continuous time stochastic volatility models.

Chapter 17 studies quadratic hedging. In quadratic hedging the price and the hedging coefficients are determined so that the mean squared hedging error is minimized. The hedging error means the difference between the terminal value of the hedging portfolio and the value of the option at the expiration.

1. A main aim of the chapter is to derive recursive formulas for quadratically optimal prices and hedging coefficients. It is important to cover both the global and the local quadratic hedging. Local quadratic hedging leads to formulas which are easier to implement than the formulas of global quadratic hedging. Quadratic hedging has some analogies with linear least squares regression, but quadratic hedging is a version of sequential regression, which is done in a time series setting. Also, quadratic hedging does not assume a linear model, but we are searching the best linear approximation in the sense of the mean squared error.

2. A second main aim of the chapter is to implement quadratic hedging. This will be done only for local quadratic hedging. We implement local quadratic hedging nonparametrically, without assuming any model for the underlying distribution of the stock prices. Although quadratic
hedging finds an optimal linear approximation for the payoff of the option, the quadratically optimal price and hedging coefficients have a nonlinear dependence on volatility, and thus nonparametric approach may lead to a better fit for these nonlinear functions than a parametric modeling.

Chapter 13 studies option strategies. Option strategies provide a large number of return distributions to choose from, so that it is possible to create a portfolio which is tailored to the expectations and the risk profile of each investor. We discuss such option strategies as vertical spreads, strangles, straddles, butterflies, condors, and calendar spreads. Options can be combined with stocks to create covered calls and protective put. Options can be combined with bonds to create capital guarantee products. We give insight into these option strategies by estimating the return distributions of the strategies.

Chapter 18 describes interest rate derivatives. The market of interest rate derivatives is even larger than the market of equity derivatives. Interest rate forwards include forward zero coupon bonds, forward rate agreements, and swaps. Interest rate options include caps and floors.
Part I

Statistical Finance
Chapter 2

Financial Instruments

The basic assets which are traded in financial markets include stocks and bonds. A large part of financial markets consists of trading with derivative assets, like futures and options, whose prices are derived from the prices of the basic assets. Stock indexes can be considered as derivative assets, since the price of a stock index is a linear combination of the prices of the underlying stocks. A stock index is a more simple derivative asset than an option, whose terminal price is a nonlinear function of the price of the underlying stock.

In addition, we describe in this section the data sets which are used throughout the book to illustrate the methods.

2.1 Stocks

Stocks are securities representing an ownership in a corporation. The owner of a stock has a limited liability. The limited liability implies that the price of a stock is always nonnegative, so that the price S_t of a stock at time t satisfies

$$0 \leq S_t < \infty.$$

Stock issuing companies have a variety of legal forms depending on the country of domicile of the company.\(^1\) Common stock typically gives voting rights in company decisions, whereas preferred stock does not typically give voting rights, but the owners of preferred stocks are entitled to receive a certain

\(^1\) Statistical data of stock prices is usually available only for the stocks that are publicly traded in a stock exchange. In UK the companies whose stocks are publicly traded are called public limited companies (PLC), and in Germany they are called Aktiengesellschaften (AG). The companies whose owners have a limited liability but whose stocks are not publicly traded are called private companies limited by shares (Ltd), and Gesellschaft mit beschränkter Haftung (GmbH).