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Part I: Empirical risk minimization in the direct case

e We observe X, ..., X, € R?which are i.i.d. with density . We want to estimate
f:RY > R.

e Estimator f is chosen to minimize empirical risk v,(f) over f € C.

e |log-likelihood empirical risk:
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Empirical risk minimization without regularization



L, empirical risk
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Dense minimizer and 6-net minimizer

e Dense minimizer

— Dense minimizer f is a minimizer of the empirical risk over #, up to € > 0:

Vo(f) < infoeryn(g) + €.

e O-net minimizer

— Let F5 be a finite 0-net of F: for each f € F there is ¢ € ¥ such that
If — ¢l < 0.

— Define the §-net estimator f by

P

f = argming g y.(¢).
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Remark: Complexity penalization

The classical Sobolev space/spline case:

e Dense minimizer minimizes

ya(g)overge F ={g:|lg"lL < L}

e This is equivalent to minimizing

va(g) + a - |lg”|l5 over g.
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Bounds for the mean integrated squared error

e Upper bound for the dense minimizer:
Define the entropy integral G(y) = fo‘b \/loge(#%) do.
Let y, be such that y? > C’ n~12G(y,), for a positive constant C”.
For f € F,

E|If- Al <c(¢?+e).

for a positive constant C.

e Upper bound for the d-net estimator: For f € F,

E|f -l = e+ loge(#n%) =

where C;, C, are positive constants.
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e smoothness classes,
e classes defined by structural restrictions,

e parametric, semiparametric restrictions.



Empirical risk minimization

One may minimize the empirical risk over

e smoothness classes,
e classes defined by structural restrictions,

e parametric, semiparametric restrictions.



Empirical risk minimization

One may minimize the empirical risk over

e smoothness classes,
e classes defined by structural restrictions,

e parametric, semiparametric restrictions.



Part ll: Statistical inverse problems: density estimation

e Direct case: we observe X, ..., X, € R? which are i.i.d. with density f.
We want to estimate f : RY — R.

e |nverse case: we observe Yi,...,Y, € Y which are i.i.d. with density Ag.
We want to estimate function g : R — R.
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Example I: Deconvolution

e et A be the convolution operator:

(Ag)(x) = (K * g)(x) = f K(x —y)g(y)dy
for some function K.
o IfY,,...,Y, ~ Ag, then we may write
Yi = Xi + €,

where X; ~ g, ¢ ~ K, and ¢ 1L X;.
The observations X; are contaminated with measurements errors.
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Example ll: Tomography
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Example ll: Tomography

The sample space of lines is identified with Y = S, X [0, o), since lines may be
written as Py, = {z € R : zl's = u},where s € Sy = {x e R?: ||s|| = 1}, u > 0.
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Example ll: Tomography

Let us define Ag : 4% [0,00) > R,
where g : RY — R is the underlying density.

Let (S,U) ~ Ag. The basic observation is that

fU|S=s(M):f g
Ps.y

where Py, = {zeRY: zls=u}, s€ Sy u>0.
In addition, S ~ Unif(S ).

Now (Ag)(s, u) = fs(8) fuis=s) = 7575 Jp &

The Radon transform of ¢ : RY — Ris (Rg)(s,u) = [, &.
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Let

Let X

,,,,,

Example lll: Estimation of the derivative

(Ag)(1) = f g(u) du.

(0]

X, be i.i.d. with density f = Ag. We have

g(t) = f'(1).

14



Inverse problems of applied mathematics

e We want to find g : R — R which satisfies
Ag =y
for a given y.
e Sampling operator: Ag = (g(xy),...,g(x,)). Now g is not uniquely determined.

e Convolution operator: Ag = K x g = y.

— If F(K)(w) > 0 for all w, then g is uniquely determined: We have F(K = g) =
F(K) - F(g) and thus g = F"Y(F(y)/F(K)).

15
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Well posed inverse problems

An inverse problem is well-posed, when

1. the solution exists
2. it is unique

3. it is stable: it depends continuously on data:
A~! has to be continuous.
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Part Ill: Can inverse problems be solved with empirical risk
minimization?

e Direct case: we observe X, ..., X, € R? which are i.i.d. with density f.
We want to estimate f : R — R.

e Inverse case: we observe Yi,...,Y, € Y which are i.i.d. with density Ag.
We want to estimate function g : R — R.
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A classical solution

Find ¢ minimizing
Yn(Ag) + a - D(),
where
. BN .
Yu(AR) = =~ > log(AZ)(Y))
sy

and D(g) is a penalization.
For example, D(g) = llg”|l5.
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A new solution

Define the L, empirical risk by

Y =~ > (20091 + lglR).

i=1

where Q is the adjoint of the inverse of A:
(A h)g = f h(Qg),
R4 Y

for h € Ly(Y), g € Ly(RY).
1

Remember the direct case: y,(g) = - >\, (—2g(X,-) + ||g||§).

n
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The L, empirical risk:

Now,

18 — gll> - llgl3

L, empirical risk; motivation

n

(@ =n"" > (-2002)() + 121R).
i=1
— 2 serllB=-2 [ (47Agz+ IGIR
R¢ R4

2 n
I fY (A9)(02) + I31B ~ =~ 3" (02X + I3
i=1

= 7 (@).
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Dense minimizer and 6-net minimizer

e Dense minimizer

— Define the dense minimizer ¢ as a minimizer of the empirical risk over ¥, up
toe > 0:
Yn(g) < infhETYn(h) + €.

e H-net minimizer

— Let F5 be a o-net of F: for each g € ¥ there is ¢ € F5 such that ||g — ¢||, < 6.

— Define the 6-net estimator g by

g = argmin .z y,(9).
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Bounds for the mean integrated squared error
e Upper bound for dense minimizer: Define the operator norm

T 1Q(¢ — &),
s = max
0.0’ <Fs02¢ || — &'\l

, o> 0.

Define the entropy integral G(y) = fow Ts \/loge(#%) do.
Let , be such that y? > C’ n~'/2G(y,,), for a positive constant C”.
For g € F,
Elg-glh<C(yr+e).
for a positive constant C.

e Upper bound for -net estimator: For g € F,

T2 - (log,(#F;) + 1)

n

E|g - gll; < Ci16* + C,
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Universal rate formula

e The minimax rate y,, over ¥ is the solution to the equation
ny? = Tlin log #F,,,

where

— Fsis a minimal -net of F
(for each f € ¥ there is ¢ € Fs such that ||f — ¢|, < 9)
— and T is the operator norm

T — 10(¢ — &)ll»
s = max
0.0’ <Fs. 020 ||d — &'||>

; o> 0.
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Examples of MISE bounds

o Letlog(#Fs) =<6 Pand Ts =< 67
For a smoothness class with smoothness index s we have b = d/s.

e Universal rate formula:

np? = T2 log(#Fy,) & @, = n /D]

e For the dense minimizer: G(y) = fow 642 ds < Yy P2+* when a + b/2 < 1.
The rate is given by

2 —-1/2 —1/[2(a+1)+b
W =1 EG() @ gy = n D
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Examples of O (adjoint of the inverse of A)

e Deconvolution: Let Ag = K * g. Then Qg = F~'(Fg/FK).

e Radon transform: Let (Ag)(s,u) = [, g. Then

(Q9)(s,u) = C - (F7'I,g)(w),

where I,g(t) = (Fg)(ts), for s € S4, t € [0, 00).
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An alternative I: Singular value decomposition

Let ® be the basis consisting of eigenfunctions of operator A*A (A* is the adjoint

operator to the operator A).
The singular value decomposition estimator is defined by

3 = ) vy Wand(),

pey

where @, c O is finite,
y; is the eigenvalue corresponding to ¢: A*A¢ = y;¢,

A

def 1
Bon 2~ ) walY) x< Ag.yry >,
i=1

Yy = Ad/lIAdl.

26



Motivation of the singular value decomposition estimator
Let ® be the basis consisting of eigenfunctions of operator A*A. Denote with yé

the eigenvalue corresponding to ¢: A*A¢ = y;¢, (A*A) ¢ = v, %¢.
Denote ¢y = A¢/||Ad|l,. We may write

g = Y <g¢>d=) <A AAgH>¢

Ped ped

_ -2 * _ -2

= D VP <AAgo>¢= ) vt <AgAp> ¢
P ped

= Z’yg;1<Ag,w¢>¢,
ped

where we used the fact

1Al =< Ag, Ap >=< ¢,A*A¢ >= v,lI¢ll5 = v;.
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An alternative Il: Wavelet-vaguelette decomposition

The wavelet-vaguelette estimator is defined by

3x) = ) By ity (),

ped,,

where ©,, C O,
® is a wavelet basis,

def 1

I//\t(p’n = ; M¢(Yl) < Ag, Ugp >,

gt
.

uy satisfies
A*I/t¢ = IB¢¢

28



Motivation of the wavelet-vaguelette estimator

Let ® be a wavelet basis. Let u, satisfy

A*l/t¢ = ,8¢¢

We may write

§ = Z<g,¢>¢

ped

= > <gAuy> ;'

Ped

= Z < Ag, Uy >,8<;1¢.

Ped

29



Summary

e [, empirical risk may be used to solve statistical inverse problems
e estimators are adapted to the underlying function

e a comprehensive mathematical analysis of the behavior of the estimators is
possible
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