Empirical risk minimization in inverse problems

Jussi Klemelä University of Mannheim

October 14, 2008

Contents

- A glimpse at empirical risk minimization (in the setting of density estimation)
- A glimpse at statistical inverse problems
- Can statistical inverse problems be solved with empirical risk minimization?

Contents

- A glimpse at empirical risk minimization (in the setting of density estimation)
- A glimpse at statistical inverse problems
- Can statistical inverse problems be solved with empirical risk minimization?

Contents

- A glimpse at empirical risk minimization (in the setting of density estimation)
- A glimpse at statistical inverse problems
- Can statistical inverse problems be solved with empirical risk minimization?

- We observe $X_1, \ldots, X_n \in \mathbf{R}^d$ which are i.i.d. with density f. We want to estimate $f : \mathbf{R}^d \to \mathbf{R}$.
- Estimator \hat{f} is chosen to minimize empirical risk $\gamma_n(\hat{f})$ over $\hat{f} \in C$.
- log-likelihood empirical risk:

$$\gamma_n(\hat{f}) = -\frac{1}{n} \sum_{i=1}^n \log \hat{f}(X_i)$$

$$\gamma_n(\hat{f}) = \frac{1}{n} \sum_{i=1}^n \left(-2\hat{f}(X_i) + ||\hat{f}||_2^2 \right)$$

- We observe $X_1, \ldots, X_n \in \mathbf{R}^d$ which are i.i.d. with density f. We want to estimate $f : \mathbf{R}^d \to \mathbf{R}$.
- Estimator \hat{f} is chosen to minimize empirical risk $\gamma_n(\hat{f})$ over $\hat{f} \in C$.
- log-likelihood empirical risk:

$$\gamma_n(\hat{f}) = -\frac{1}{n} \sum_{i=1}^n \log \hat{f}(X_i)$$

$$\gamma_n(\hat{f}) = \frac{1}{n} \sum_{i=1}^n \left(-2\hat{f}(X_i) + ||\hat{f}||_2^2 \right)$$

- We observe $X_1, \ldots, X_n \in \mathbf{R}^d$ which are i.i.d. with density f. We want to estimate $f : \mathbf{R}^d \to \mathbf{R}$.
- Estimator \hat{f} is chosen to minimize empirical risk $\gamma_n(\hat{f})$ over $\hat{f} \in C$.
- log-likelihood empirical risk:

$$\gamma_n(\hat{f}) = -\frac{1}{n} \sum_{i=1}^n \log \hat{f}(X_i)$$

$$\gamma_n(\hat{f}) = \frac{1}{n} \sum_{i=1}^n \left(-2\hat{f}(X_i) + ||\hat{f}||_2^2 \right)$$

- We observe $X_1, \ldots, X_n \in \mathbf{R}^d$ which are i.i.d. with density f. We want to estimate $f : \mathbf{R}^d \to \mathbf{R}$.
- Estimator \hat{f} is chosen to minimize empirical risk $\gamma_n(\hat{f})$ over $\hat{f} \in C$.
- log-likelihood empirical risk:

$$\gamma_n(\hat{f}) = -\frac{1}{n} \sum_{i=1}^n \log \hat{f}(X_i)$$

$$\gamma_n(\hat{f}) = \frac{1}{n} \sum_{i=1}^n \left(-2\hat{f}(X_i) + ||\hat{f}||_2^2 \right)$$

Empirical risk minimization without regularization

L_2 empirical risk

• *L*₂ empirical risk:

$$\gamma_n(\hat{f}) = \frac{1}{n} \sum_{i=1}^n \left(-2\hat{f}(X_i) + ||\hat{f}||_2^2 \right).$$

We have

$$\|\hat{f} - f\|_{2}^{2} - \|f\|_{2}^{2} = -2 \int_{\mathbb{R}^{d}} f \hat{f} + \|\hat{f}\|_{2}^{2}$$

$$\approx -\frac{2}{n} \sum_{i=1}^{n} \hat{f}(X_{i}) + \|\hat{f}\|_{2}^{2}$$

$$= \gamma_{n} (\hat{f}).$$

L_2 empirical risk

• *L*₂ empirical risk:

$$\gamma_n(\hat{f}) = \frac{1}{n} \sum_{i=1}^n \left(-2\hat{f}(X_i) + ||\hat{f}||_2^2 \right).$$

We have

$$||\hat{f} - f||_{2}^{2} - ||f||_{2}^{2} = -2 \int_{\mathbb{R}^{d}} f \hat{f} + ||\hat{f}||_{2}^{2}$$

$$\approx -\frac{2}{n} \sum_{i=1}^{n} \hat{f}(X_{i}) + ||\hat{f}||_{2}^{2}$$

$$= \gamma_{n} (\hat{f}).$$

Dense minimizer

- Dense minimizer \hat{f} is a minimizer of the empirical risk over \mathcal{F} , up to $\epsilon > 0$:

$$\gamma_n(\hat{f}) \le \inf_{g \in \mathcal{F}} \gamma_n(g) + \epsilon.$$

- δ -net minimizer
 - Let \mathcal{F}_{δ} be a finite δ -net of \mathcal{F} : for each $f \in \mathcal{F}$ there is $\phi \in \mathcal{F}_{\delta}$ such that $||f \phi||_2 \le \delta$.
 - Define the δ -net estimator \hat{f} by

$$\hat{f} = \operatorname{argmin}_{\phi \in \mathcal{F}_{\delta}} \gamma_n(\phi).$$

- Dense minimizer
 - Dense minimizer \hat{f} is a minimizer of the empirical risk over \mathcal{F} , up to $\epsilon > 0$:

$$\gamma_n(\hat{f}) \le \inf_{g \in \mathcal{F}} \gamma_n(g) + \epsilon.$$

- δ -net minimizer
 - Let \mathcal{F}_{δ} be a finite δ -net of \mathcal{F} : for each $f \in \mathcal{F}$ there is $\phi \in \mathcal{F}_{\delta}$ such that $||f \phi||_2 \leq \delta$.
 - Define the δ -net estimator \hat{f} by

$$\hat{f} = \operatorname{argmin}_{\phi \in \mathcal{F}_{\delta}} \gamma_n(\phi).$$

- Dense minimizer
 - Dense minimizer \hat{f} is a minimizer of the empirical risk over \mathcal{F} , up to $\epsilon > 0$:

$$\gamma_n(\hat{f}) \le \inf_{g \in \mathcal{F}} \gamma_n(g) + \epsilon.$$

- δ -net minimizer
 - Let \mathcal{F}_{δ} be a finite δ -net of \mathcal{F} : for each $f \in \mathcal{F}$ there is $\phi \in \mathcal{F}_{\delta}$ such that $||f \phi||_2 \leq \delta$.
 - Define the δ -net estimator \hat{f} by

$$\hat{f} = \operatorname{argmin}_{\phi \in \mathcal{F}_{\delta}} \gamma_n(\phi).$$

- Dense minimizer
 - Dense minimizer \hat{f} is a minimizer of the empirical risk over \mathcal{F} , up to $\epsilon > 0$:

$$\gamma_n(\hat{f}) \le \inf_{g \in \mathcal{F}} \gamma_n(g) + \epsilon.$$

- δ -net minimizer
 - Let \mathcal{F}_{δ} be a finite δ -net of \mathcal{F} : for each $f \in \mathcal{F}$ there is $\phi \in \mathcal{F}_{\delta}$ such that $||f \phi||_2 \leq \delta$.
 - Define the δ -net estimator \hat{f} by

$$\hat{f} = \operatorname{argmin}_{\phi \in \mathcal{F}_{\delta}} \gamma_n(\phi).$$

- Dense minimizer
 - Dense minimizer \hat{f} is a minimizer of the empirical risk over \mathcal{F} , up to $\epsilon > 0$:

$$\gamma_n(\hat{f}) \le \inf_{g \in \mathcal{F}} \gamma_n(g) + \epsilon.$$

- δ -net minimizer
 - Let \mathcal{F}_{δ} be a finite δ -net of \mathcal{F} : for each $f \in \mathcal{F}$ there is $\phi \in \mathcal{F}_{\delta}$ such that $||f \phi||_2 \leq \delta$.
 - Define the δ -net estimator \hat{f} by

$$\hat{f} = \operatorname{argmin}_{\phi \in \mathcal{F}_{\delta}} \gamma_n(\phi).$$

Remark: Complexity penalization

The classical Sobolev space/spline case:

• Dense minimizer minimizes

$$\gamma_n(g)$$
 over $g \in \mathcal{F} = \{g : ||g''||_2 \le L\}.$

• This is equivalent to minimizing

$$\gamma_n(g) + \alpha \cdot ||g''||_2^2$$
 over g .

Remark: Complexity penalization

The classical Sobolev space/spline case:

• Dense minimizer minimizes

$$\gamma_n(g)$$
 over $g \in \mathcal{F} = \{g : ||g''||_2 \le L\}.$

• This is equivalent to minimizing

$$\gamma_n(g) + \alpha \cdot ||g''||_2^2$$
 over g .

Bounds for the mean integrated squared error

• Upper bound for the dense minimizer: Define the entropy integral $G(\psi) = \int_0^{\psi} \sqrt{\log_e(\#\mathcal{F}_{\delta})} \, d\delta$. Let ψ_n be such that $\psi_n^2 \geq C' \, n^{-1/2} G(\psi_n)$, for a positive constant C'. For $f \in \mathcal{F}$,

$$E \left\| \hat{f} - f \right\|_{2}^{2} \le C \left(\psi_{n}^{2} + \epsilon \right),$$

for a positive constant *C*.

• Upper bound for the δ -net estimator: For $f \in \mathcal{F}$,

$$E \|\hat{f} - f\|_{2}^{2} \le C_{1}\delta^{2} + C_{2} \frac{\log_{e}(\#\mathcal{F}_{\delta}) + 1}{n},$$

where C_1, C_2 are positive constants.

Bounds for the mean integrated squared error

• Upper bound for the dense minimizer: Define the entropy integral $G(\psi) = \int_0^{\psi} \sqrt{\log_e(\#\mathcal{F}_{\delta})} \, d\delta$. Let ψ_n be such that $\psi_n^2 \geq C' \, n^{-1/2} G(\psi_n)$, for a positive constant C'. For $f \in \mathcal{F}$,

$$E \left\| \hat{f} - f \right\|_{2}^{2} \le C \left(\psi_{n}^{2} + \epsilon \right),$$

for a positive constant *C*.

• Upper bound for the δ -net estimator: For $f \in \mathcal{F}$,

$$E \|\hat{f} - f\|_{2}^{2} \le C_{1}\delta^{2} + C_{2} \frac{\log_{e}(\#\mathcal{F}_{\delta}) + 1}{n},$$

where C_1, C_2 are positive constants.

Empirical risk minimization

One may minimize the empirical risk over

- smoothness classes,
- classes defined by structural restrictions,
- parametric, semiparametric restrictions.

Empirical risk minimization

One may minimize the empirical risk over

- smoothness classes,
- classes defined by structural restrictions,
- parametric, semiparametric restrictions.

Empirical risk minimization

One may minimize the empirical risk over

- smoothness classes,
- classes defined by structural restrictions,
- parametric, semiparametric restrictions.

Part II: Statistical inverse problems: density estimation

- Direct case: we observe $X_1, \ldots, X_n \in \mathbf{R}^d$ which are i.i.d. with density f. We want to estimate $f : \mathbf{R}^d \to \mathbf{R}$.
- Inverse case: we observe $Y_1, \ldots, Y_n \in \mathbf{Y}$ which are i.i.d. with density Ag. We want to estimate function $g : \mathbf{R}^d \to \mathbf{R}$.

Part II: Statistical inverse problems: density estimation

- Direct case: we observe $X_1, \ldots, X_n \in \mathbf{R}^d$ which are i.i.d. with density f. We want to estimate $f : \mathbf{R}^d \to \mathbf{R}$.
- Inverse case: we observe $Y_1, \ldots, Y_n \in \mathbf{Y}$ which are i.i.d. with density Ag. We want to estimate function $g : \mathbf{R}^d \to \mathbf{R}$.

Example I: Deconvolution

• Let *A* be the convolution operator:

$$(Ag)(x) = (K * g)(x) = \int K(x - y)g(y) dy$$

for some function *K*.

• If $Y_1, \ldots, Y_n \sim Ag$, then we may write

$$Y_i = X_i + \epsilon_i$$

where $X_i \sim g$, $\epsilon_i \sim K$, and $\epsilon_i \perp \!\!\! \perp X_i$.

The observations X_i are contaminated with measurements errors.

Example I: Deconvolution

• Let *A* be the convolution operator:

$$(Ag)(x) = (K * g)(x) = \int K(x - y)g(y) dy$$

for some function *K*.

• If $Y_1, \ldots, Y_n \sim Ag$, then we may write

$$Y_i = X_i + \epsilon_i$$

where $X_i \sim g$, $\epsilon_i \sim K$, and $\epsilon_i \perp \!\!\! \perp X_i$.

The observations X_i are contaminated with measurements errors.

The sample space of lines is identified with $\mathbf{Y} = S_d \times [0, \infty)$, since lines may be written as $P_{s,u} = \{z \in \mathbf{R}^d : z^T s = u\}$, where $s \in S_d = \{x \in \mathbf{R}^d : ||s|| = 1\}$, $u \ge 0$.

- Let us define $Ag: S_d \times [0, \infty) \to \mathbf{R}$, where $g: \mathbf{R}^d \to \mathbf{R}$ is the underlying density.
- Let $(S, U) \sim Ag$. The basic observation is that

$$f_{U|S=s}(u) = \int_{P_{s,u}} g,$$

- Now $(Ag)(s, u) = f_S(s) \cdot f_{U|S=s}(u) = \frac{1}{\mu(S_d)} \int_{P_{s,u}} g.$
- The Radon transform of $g: \mathbf{R}^d \to \mathbf{R}$ is $(Rg)(s, u) = \int_{P_{s,u}} g$.

- Let us define $Ag: S_d \times [0, \infty) \to \mathbf{R}$, where $g: \mathbf{R}^d \to \mathbf{R}$ is the underlying density.
- Let $(S, U) \sim Ag$. The basic observation is that

$$f_{U|S=s}(u) = \int_{P_{s,u}} g,$$

- Now $(Ag)(s, u) = f_S(s) \cdot f_{U|S=s}(u) = \frac{1}{\mu(S_d)} \int_{P_{s,u}} g.$
- The Radon transform of $g: \mathbf{R}^d \to \mathbf{R}$ is $(Rg)(s, u) = \int_{P_{s,u}} g$.

- Let us define $Ag: S_d \times [0, \infty) \to \mathbf{R}$, where $g: \mathbf{R}^d \to \mathbf{R}$ is the underlying density.
- Let $(S, U) \sim Ag$. The basic observation is that

$$f_{U|S=s}(u)=\int_{P_{s,u}}g,$$

- Now $(Ag)(s, u) = f_S(s) \cdot f_{U|S=s}(u) = \frac{1}{\mu(S_d)} \int_{P_{s,u}} g.$
- The Radon transform of $g: \mathbf{R}^d \to \mathbf{R}$ is $(Rg)(s, u) = \int_{P_{s,u}} g$.

- Let us define $Ag: S_d \times [0, \infty) \to \mathbf{R}$, where $g: \mathbf{R}^d \to \mathbf{R}$ is the underlying density.
- Let $(S, U) \sim Ag$. The basic observation is that

$$f_{U|S=s}(u)=\int_{P_{s,u}}g,$$

- Now $(Ag)(s, u) = f_S(s) \cdot f_{U|S=s}(u) = \frac{1}{\mu(S_d)} \int_{P_{s,u}} g.$
- The Radon transform of $g: \mathbf{R}^d \to \mathbf{R}$ is $(Rg)(s, u) = \int_{P_{s,u}} g$.

Example III: Estimation of the derivative

Let

$$(Ag)(t) = \int_{-\infty}^{t} g(u) \, du.$$

Let X_1, \ldots, X_n be i.i.d. with density f = Ag. We have

$$g(t) = f'(t).$$

Inverse problems of applied mathematics

• We want to find $g: \mathbf{R}^d \to \mathbf{R}$ which satisfies

$$Ag = y$$

for a given y.

- Sampling operator: $Ag = (g(x_1), \dots, g(x_n))$. Now g is not uniquely determined.
- Convolution operator: Ag = K * g = y.
 - If $F(K)(\omega) > 0$ for all ω , then g is uniquely determined: We have $F(K * g) = F(K) \cdot F(g)$ and thus $g = F^{-1}(F(y)/F(K))$.

Inverse problems of applied mathematics

• We want to find $g: \mathbf{R}^d \to \mathbf{R}$ which satisfies

$$Ag = y$$

for a given y.

- Sampling operator: $Ag = (g(x_1), \dots, g(x_n))$. Now g is not uniquely determined.
- Convolution operator: Ag = K * g = y.
 - If $F(K)(\omega) > 0$ for all ω , then g is uniquely determined: We have $F(K * g) = F(K) \cdot F(g)$ and thus $g = F^{-1}(F(y)/F(K))$.

Inverse problems of applied mathematics

• We want to find $g: \mathbf{R}^d \to \mathbf{R}$ which satisfies

$$Ag = y$$

for a given y.

- Sampling operator: $Ag = (g(x_1), \dots, g(x_n))$. Now g is not uniquely determined.
- Convolution operator: Ag = K * g = y.
 - If $F(K)(\omega) > 0$ for all ω , then g is uniquely determined: We have $F(K * g) = F(K) \cdot F(g)$ and thus $g = F^{-1}(F(y)/F(K))$.

Inverse problems of applied mathematics

• We want to find $g: \mathbf{R}^d \to \mathbf{R}$ which satisfies

$$Ag = y$$

for a given y.

- Sampling operator: $Ag = (g(x_1), \dots, g(x_n))$. Now g is not uniquely determined.
- Convolution operator: Ag = K * g = y.
 - If $F(K)(\omega) > 0$ for all ω , then g is uniquely determined: We have $F(K * g) = F(K) \cdot F(g)$ and thus $g = F^{-1}(F(y)/F(K))$.

Well posed inverse problems

An inverse problem is well-posed, when

- 1. the solution exists
- 2. it is unique
- 3. it is stable: it depends continuously on data: A^{-1} has to be continuous.

Part III: Can inverse problems be solved with empirical risk minimization?

- Direct case: we observe $X_1, \ldots, X_n \in \mathbf{R}^d$ which are i.i.d. with density f. We want to estimate $f : \mathbf{R}^d \to \mathbf{R}$.
- Inverse case: we observe $Y_1, \ldots, Y_n \in \mathbf{Y}$ which are i.i.d. with density Ag. We want to estimate function $g : \mathbf{R}^d \to \mathbf{R}$.

Part III: Can inverse problems be solved with empirical risk minimization?

- Direct case: we observe $X_1, \ldots, X_n \in \mathbf{R}^d$ which are i.i.d. with density f. We want to estimate $f : \mathbf{R}^d \to \mathbf{R}$.
- Inverse case: we observe $Y_1, \ldots, Y_n \in \mathbf{Y}$ which are i.i.d. with density Ag. We want to estimate function $g : \mathbf{R}^d \to \mathbf{R}$.

A classical solution

Find \hat{g} minimizing

$$\gamma_n(A\hat{g}) + \alpha \cdot D(\hat{g}),$$

where

$$\gamma_n(A\hat{g}) = -\frac{1}{n} \sum_{i=1}^n \log(A\hat{g})(Y_i)$$

and D(g) is a penalization.

For example, $D(g) = ||g''||_2^2$.

A new solution

Define the L_2 empirical risk by

$$\gamma_n(g) = \frac{1}{n} \sum_{i=1}^n \left(-2(Qg)(Y_i) + ||g||_2^2 \right),$$

where Q is the adjoint of the inverse of A:

$$\int_{\mathbf{R}^d} (A^{-1}h)g = \int_{\mathbf{Y}} h(Qg),$$

for $h \in L_2(\mathbf{Y})$, $g \in L_2(\mathbf{R}^d)$.

Remember the direct case: $\gamma_n(g) = \frac{1}{n} \sum_{i=1}^n \left(-2g(X_i) + ||g||_2^2 \right)$.

L_2 empirical risk; motivation

The L_2 empirical risk:

$$\gamma_n(\hat{g}) = n^{-1} \sum_{i=1}^n \left(-2(Q\hat{g})(Y_i) + ||\hat{g}||_2^2 \right).$$

Now,

$$\begin{aligned} \|\hat{g} - g\|_{2}^{2} - \|g\|_{2}^{2} &= -2 \int_{\mathbf{R}^{d}} g\hat{g} + \|\hat{g}\|_{2}^{2} = -2 \int_{\mathbf{R}^{d}} (A^{-1}Ag)\hat{g} + \|\hat{g}\|_{2}^{2} \\ &= -2 \int_{\mathbf{Y}} (Ag)(Q\hat{g}) + \|\hat{g}\|_{2}^{2} \approx -\frac{2}{n} \sum_{i=1}^{n} (Q\hat{g})(Y_{i}) + \|\hat{g}\|_{2}^{2} \\ &= \gamma_{n}(\hat{g}). \end{aligned}$$

Dense minimizer

- Define the dense minimizer \hat{g} as a minimizer of the empirical risk over \mathcal{F} , up to $\epsilon > 0$:

$$\gamma_n(\hat{g}) \leq \inf_{h \in \mathcal{F}} \gamma_n(h) + \epsilon.$$

- δ -net minimizer
 - Let \mathcal{F}_{δ} be a δ -net of \mathcal{F} : for each $g \in \mathcal{F}$ there is $\phi \in \mathcal{F}_{\delta}$ such that $||g \phi||_2 \leq \delta$.
 - Define the δ -net estimator \hat{g} by

$$\hat{g} = \operatorname{argmin}_{\phi \in \mathcal{F}_{\delta}} \gamma_n(\phi).$$

- Dense minimizer
 - Define the dense minimizer \hat{g} as a minimizer of the empirical risk over \mathcal{F} , up to $\epsilon > 0$:

$$\gamma_n(\hat{g}) \leq \inf_{h \in \mathcal{F}} \gamma_n(h) + \epsilon.$$

- δ -net minimizer
 - Let \mathcal{F}_{δ} be a δ -net of \mathcal{F} : for each $g \in \mathcal{F}$ there is $\phi \in \mathcal{F}_{\delta}$ such that $||g \phi||_2 \leq \delta$.
 - Define the δ -net estimator \hat{g} by

$$\hat{g} = \operatorname{argmin}_{\phi \in \mathcal{F}_{\delta}} \gamma_n(\phi).$$

- Dense minimizer
 - Define the dense minimizer \hat{g} as a minimizer of the empirical risk over \mathcal{F} , up to $\epsilon > 0$:

$$\gamma_n(\hat{g}) \leq \inf_{h \in \mathcal{F}} \gamma_n(h) + \epsilon.$$

- δ -net minimizer
 - Let \mathcal{F}_{δ} be a δ -net of \mathcal{F} : for each $g \in \mathcal{F}$ there is $\phi \in \mathcal{F}_{\delta}$ such that $||g \phi||_2 \leq \delta$.
 - Define the δ -net estimator \hat{g} by

$$\hat{g} = \operatorname{argmin}_{\phi \in \mathcal{F}_{\delta}} \gamma_n(\phi).$$

- Dense minimizer
 - Define the dense minimizer \hat{g} as a minimizer of the empirical risk over \mathcal{F} , up to $\epsilon > 0$:

$$\gamma_n(\hat{g}) \leq \inf_{h \in \mathcal{F}} \gamma_n(h) + \epsilon.$$

- δ -net minimizer
 - Let \mathcal{F}_{δ} be a δ -net of \mathcal{F} : for each $g \in \mathcal{F}$ there is $\phi \in \mathcal{F}_{\delta}$ such that $||g \phi||_2 \leq \delta$.
 - Define the δ -net estimator \hat{g} by

$$\hat{g} = \operatorname{argmin}_{\phi \in \mathcal{F}_{\delta}} \gamma_n(\phi).$$

- Dense minimizer
 - Define the dense minimizer \hat{g} as a minimizer of the empirical risk over \mathcal{F} , up to $\epsilon > 0$:

$$\gamma_n(\hat{g}) \leq \inf_{h \in \mathcal{F}} \gamma_n(h) + \epsilon.$$

- δ -net minimizer
 - Let \mathcal{F}_{δ} be a δ -net of \mathcal{F} : for each $g \in \mathcal{F}$ there is $\phi \in \mathcal{F}_{\delta}$ such that $||g \phi||_2 \leq \delta$.
 - Define the δ -net estimator \hat{g} by

$$\hat{g} = \operatorname{argmin}_{\phi \in \mathcal{F}_{\delta}} \gamma_n(\phi).$$

Bounds for the mean integrated squared error

Upper bound for dense minimizer: Define the operator norm

$$T_{\delta} = \max_{\phi, \phi' \in \mathcal{F}_{\delta}, \phi \neq \phi'} \frac{\|Q(\phi - \phi')\|_{2}}{\|\phi - \phi'\|_{2}}, \qquad \delta > 0.$$

Define the entropy integral $G(\psi) = \int_0^{\psi} T_{\delta} \sqrt{\log_e(\#\mathcal{F}_{\delta})} \, d\delta$. Let ψ_n be such that $\psi_n^2 \geq C' \, n^{-1/2} G(\psi_n)$, for a positive constant C'. For $g \in \mathcal{F}$,

$$|E||\hat{g} - g||_2^2 \le C\left(\psi_n^2 + \epsilon\right),$$

for a positive constant C.

• Upper bound for δ -net estimator: For $g \in \mathcal{F}$,

$$E \|\hat{g} - g\|_2^2 \le C_1 \delta^2 + C_2 \frac{T_\delta^2 \cdot (\log_e(\#\mathcal{F}_\delta) + 1)}{n}.$$

Bounds for the mean integrated squared error

Upper bound for dense minimizer: Define the operator norm

$$T_{\delta} = \max_{\phi, \phi' \in \mathcal{F}_{\delta}, \phi \neq \phi'} \frac{\|Q(\phi - \phi')\|_{2}}{\|\phi - \phi'\|_{2}}, \qquad \delta > 0.$$

Define the entropy integral $G(\psi) = \int_0^{\psi} T_{\delta} \sqrt{\log_e(\#\mathcal{F}_{\delta})} \, d\delta$. Let ψ_n be such that $\psi_n^2 \geq C' \, n^{-1/2} G(\psi_n)$, for a positive constant C'. For $g \in \mathcal{F}$,

$$E \|\hat{g} - g\|_2^2 \le C \left(\psi_n^2 + \epsilon\right),\,$$

for a positive constant C.

• Upper bound for δ -net estimator: For $g \in \mathcal{F}$,

$$|E||\hat{g} - g||_2^2 \le C_1 \delta^2 + C_2 \frac{T_\delta^2 \cdot (\log_e(\#\mathcal{F}_\delta) + 1)}{n}.$$

Universal rate formula

• The minimax rate ψ_n over \mathcal{F} is the solution to the equation

$$n\psi_n^2 = T_{\psi_n}^2 \log \# \mathcal{F}_{\psi_n},$$

where

- \mathcal{F}_{δ} is a minimal δ -net of \mathcal{F} (for each $f \in \mathcal{F}$ there is $\phi \in \mathcal{F}_{\delta}$ such that $||f - \phi||_2 \leq \delta$)
- and T_{δ} is the operator norm

$$T_{\delta} = \max_{\phi, \phi' \in \mathcal{F}_{\delta}, \phi \neq \phi'} \frac{\|Q(\phi - \phi')\|_{2}}{\|\phi - \phi'\|_{2}}, \qquad \delta > 0.$$

Examples of MISE bounds

- Let $\log(\#\mathcal{F}_{\delta}) \times \delta^{-b}$ and $T_{\delta} \times \delta^{-a}$. For a smoothness class with smoothness index s we have b = d/s.
- Universal rate formula:

$$n\psi_n^2 = T_{\psi_n}^2 \log(\#\mathcal{F}_{\psi_n}) \Leftrightarrow \psi_n = n^{-1/[2(a+1)+b]}.$$

• For the dense minimizer: $G(\psi) \asymp \int_0^{\psi} \delta^{-a-b/2} d\delta \asymp \psi^{-a-b/2+1}$ when a+b/2 < 1. The rate is given by

$$\psi_n^2 = n^{-1/2}G(\psi_n) \Leftrightarrow \psi_n = n^{-1/[2(a+1)+b]}.$$

Examples of MISE bounds

- Let $\log(\#\mathcal{F}_{\delta}) \times \delta^{-b}$ and $T_{\delta} \times \delta^{-a}$. For a smoothness class with smoothness index s we have b = d/s.
- Universal rate formula:

$$n\psi_n^2 = T_{\psi_n}^2 \log(\#\mathcal{F}_{\psi_n}) \Leftrightarrow \psi_n = n^{-1/[2(a+1)+b]}.$$

• For the dense minimizer: $G(\psi) \asymp \int_0^{\psi} \delta^{-a-b/2} d\delta \asymp \psi^{-a-b/2+1}$ when a+b/2 < 1. The rate is given by

$$\psi_n^2 = n^{-1/2}G(\psi_n) \Leftrightarrow \psi_n = n^{-1/[2(a+1)+b]}.$$

Examples of MISE bounds

- Let $\log(\#\mathcal{F}_{\delta}) \times \delta^{-b}$ and $T_{\delta} \times \delta^{-a}$. For a smoothness class with smoothness index s we have b = d/s.
- Universal rate formula:

$$n\psi_n^2 = T_{\psi_n}^2 \log(\#\mathcal{F}_{\psi_n}) \Leftrightarrow \psi_n = n^{-1/[2(a+1)+b]}.$$

• For the dense minimizer: $G(\psi) \asymp \int_0^{\psi} \delta^{-a-b/2} d\delta \asymp \psi^{-a-b/2+1}$ when a+b/2 < 1. The rate is given by

$$\psi_n^2 = n^{-1/2}G(\psi_n) \Leftrightarrow \psi_n = n^{-1/[2(a+1)+b]}.$$

Examples of Q (adjoint of the inverse of A)

- Deconvolution: Let Ag = K * g. Then $Qg = F^{-1}(Fg/FK)$.
- Radon transform: Let $(Ag)(s, u) = \int_{P_{s,u}} g$. Then

$$(Qg)(s, u) = C \cdot (F_1^{-1}I_sg)(u),$$

where $I_s g(t) = (Fg)(ts)$, for $s \in S_d$, $t \in [0, \infty)$.

Examples of Q (adjoint of the inverse of A)

- Deconvolution: Let Ag = K * g. Then $Qg = F^{-1}(Fg/FK)$.
- Radon transform: Let $(Ag)(s, u) = \int_{P_{s,u}} g$. Then

$$(Qg)(s, u) = C \cdot (F_1^{-1}I_sg)(u),$$

where $I_s g(t) = (Fg)(ts)$, for $s \in S_d$, $t \in [0, \infty)$.

An alternative I: Singular value decomposition

Let Φ be the basis consisting of eigenfunctions of operator A^*A (A^* is the adjoint operator to the operator A).

The singular value decomposition estimator is defined by

$$\hat{g}(x) = \sum_{\phi \in \Phi_n} \gamma_{\phi}^{-1} \hat{\psi}_{\phi,n} \phi(x),$$

where $\Phi_n \subset \Phi$ is finite, γ_{ϕ}^2 is the eigenvalue corresponding to ϕ : $A^*A\phi = \gamma_{\phi}^2\phi$,

$$\hat{\psi}_{\phi,n} \stackrel{def}{=} \frac{1}{n} \sum_{i=1}^{n} \psi_{\phi}(Y_i) \approx \langle Ag, \psi_{\phi} \rangle,$$

$$\psi_{\phi} = A\phi/||A\phi||_2.$$

Motivation of the singular value decomposition estimator

Let Φ be the basis consisting of eigenfunctions of operator A^*A . Denote with γ_{ϕ}^2 the eigenvalue corresponding to ϕ : $A^*A\phi = \gamma_{\phi}^2\phi$, $(A^*A)^{-1}\phi = \gamma_{\phi}^{-2}\phi$. Denote $\psi_{\phi} = A\phi/||A\phi||_2$. We may write

$$g = \sum_{\phi \in \Phi} \langle g, \phi \rangle \phi = \sum_{\phi \in \Phi} \langle (A^*A)^{-1}A^*Ag, \phi \rangle \phi$$

$$= \sum_{\phi \in \Phi} \gamma_{\phi}^{-2} \langle A^*Ag, \phi \rangle \phi = \sum_{\phi \in \Phi} \gamma_{\phi}^{-2} \langle Ag, A\phi \rangle \phi$$

$$= \sum_{\phi \in \Phi} \gamma_{\phi}^{-1} \langle Ag, \psi_{\phi} \rangle \phi,$$

where we used the fact

$$||A\phi||_2^2 = \langle A\phi, A\phi \rangle = \langle \phi, A^*A\phi \rangle = \gamma_\phi^2 ||\phi||_2^2 = \gamma_\phi^2.$$

An alternative II: Wavelet-vaguelette decomposition

The wavelet-vaguelette estimator is defined by

$$\hat{g}(x) = \sum_{\phi \in \Phi_n} \beta_{\phi}^{-1} \hat{u}_{\phi,n} \phi(x),$$

where $\Phi_n \subset \Phi$, Φ is a wavelet basis,

$$\hat{u}_{\phi,n} \stackrel{def}{=} \frac{1}{n} \sum_{i=1}^{n} u_{\phi}(Y_i) \approx \langle Ag, u_{\phi} \rangle,$$

 u_{ϕ} satisfies

$$A^*u_{\phi}=\beta_{\phi}\phi.$$

Motivation of the wavelet-vaguelette estimator

Let Φ be a wavelet basis. Let u_{ϕ} satisfy

$$A^*u_{\phi}=\beta_{\phi}\phi.$$

We may write

$$g = \sum_{\phi \in \Phi} \langle g, \phi \rangle \phi$$

$$= \sum_{\phi \in \Phi} \langle g, A^* u_{\phi} \rangle \beta_{\phi}^{-1} \phi$$

$$= \sum_{\phi \in \Phi} \langle Ag, u_{\phi} \rangle \beta_{\phi}^{-1} \phi.$$

Summary

- L₂ empirical risk may be used to solve statistical inverse problems
- estimators are adapted to the underlying function
- a comprehensive mathematical analysis of the behavior of the estimators is possible

Summary

- L₂ empirical risk may be used to solve statistical inverse problems
- estimators are adapted to the underlying function
- a comprehensive mathematical analysis of the behavior of the estimators is possible

Summary

- L₂ empirical risk may be used to solve statistical inverse problems
- estimators are adapted to the underlying function
- a comprehensive mathematical analysis of the behavior of the estimators is possible